引き続きLチカ

投稿日:

 引き続きLEDで遊ぶ。

 100円ショップのプラスチック・ビーズにLEDを埋め込むという武蔵野電波のマネはなかなか楽しく、それをたくさん作ったのだが、この前のやり方だといまいち個数が少なく、寂しい感じが否めない。

IMG_3193
この前のLED生け花

 それはなぜかというと、小さいブレッドボード上に電流制御抵抗をLEDごとに付けようとすると、どうしてもLEDか抵抗のどちらかを「ラインまたぎ」に横向けにしなければならず、最低2ラインが消費されてしまうからだ。このブレッドボードだと、電源回路を入れると、どうしても5個しかLEDが配置できない。

どうしてもこうなる
IMG_3195

 ブレッドボードの中身は、タテのラインが下のように一列づつ内部で接続されており、真ん中の横一文字の仕切りで分けられている。抵抗かLEDのどちらかしか真ん中をまたげないから、どちらかは横向きになるのである。

ブレッドボードの中身の結線状況
ミニブレッドボード

 そこで、便利なものがある。「集合抵抗」だ。

集合抵抗
IMG_3203

 これは、抵抗を集めてワン・パッケージにしたものだ。この写真のものは、「8素子9ピン」というもので、内部はこうなっている。

集合抵抗の回路
集合抵抗の内部

 秋葉原千石電商なら、本店地下の、レジから一番遠い、奥の抽斗で売られている。ひとつ20円だ。

 表面にはカラーコードではなく、「103」等と数字が刻まれている。これはセラコンの読み方と似ていて、「103」であれば 10\times 10^3=10k\Omega である。今回は「331」、すなわち33\times 10^1=330\Omega のものを買ってきた。

 足のピッチはちょうど2.54mmなので、ブレッドボードにピッタリ挿すことができる。これを使うと、ブレッドボード上、LEDと抵抗の組み合わせで2ピッチ消費していたところを1ピッチですませることができる。

集合抵抗を使うと1ピッチですむ
IMG_3202

 こうすると、LEDは真ん中の仕切りをまたぐだけでよいから、LEDビーズの花を8個植えることができる。

IMG_3207

 紙コップに活けると、前回より多少華やかになった。

IMG_3200

 さて、LEDビーズが増えたので、これを16個ほど量産し、「TLC5940NT」とArduinoの回路に取り付けてみよう。スケッチやブレッドボードは前に試したのと同じでいい。

IMG_3212

 動かすとこんな感じだ。

 パルス幅変調がうまくかかって、1個1個のLEDの消え具合になかなか余韻があってよい。また、よく見ていただくと、赤いビーズが必ずしも赤く光るわけではなく、緑や青に変化して光るのも、面白いところだ。




耽るLチカ

投稿日:

 LEDは半導体であるから、電球と違って、光り始める前は抵抗は無限大であり、電流は流れない。ところが電圧がVfを超えて光り始めたら最後、抵抗がなくなって電源をショートさせた状態でぶっ飛び、自分自身も壊れる。従って必ず抵抗を一緒にくっつけてやるのだ。

 その抵抗を選ぶのは簡単で、基本的に E = I\cdot R という、この式のみでよい。LEDを買ってくると、流すべき電流値(If)、光り始める電圧(Vf)がどこかに書いてあるから、それに従って計算する。すなわち、

R = \frac{V - Vf}{If}

ここに、

V 自分が用意する電源の電圧
Vf 買ってきたLEDのVf(順方向電圧)、つまり光り始める電圧
If 買ってきたLEDのIf(順方向電流)、つまり光らせるために必要な電流

 ただ、抵抗は入手可能な数値が決まっており、そのものピタリという抵抗値のものは売っていない。なので、計算した値と一番近い抵抗を選び、その抵抗値で再び電流を計算して、買ってきたLEDのIfを超えていないかどうかを確かめる。

 これが、簡単な計算ではあるけどいちいち面倒くさい。

 それでまあ、抵抗を選ぶのにこういうスプレッドシートを作る。

 それから、これを使ってみよう。

IMG_3181

 これは、「武蔵野電波のプロトタイパーズ第15回『TLC5940で16個のLEDを遊ぶ』」で取り上げられている「TLC5940NT」というICだ。千石電商本店2階、入って左側の、一番奥のほうの抽斗で売られている。武蔵野電波のページでは400~700円とされているが、千石電商の店頭売りでは390円である。

 Arduinoで使うには、GitHubにあるライブラリをダウンロードし、zipを展開して出てくる「tlc5940」というディレクトリをArduino IDEのインストールディレクトリの下にある「libraries」の中にコピーすればよい。

 スペックシートはコレだが、スペックシートを見るより、Arduinoにライブラリを入れると出てくるようになるサンプルスケッチの「BasicUse」を見た方が分かり易いと思う。こんな風にサンプルは書かれている。

/*
    Basic Pin setup:
    ------------                                  ---u----
    ARDUINO   13|-> SCLK (pin 25)           OUT1 |1     28| OUT channel 0
              12|                           OUT2 |2     27|-> GND (VPRG)
              11|-> SIN (pin 26)            OUT3 |3     26|-> SIN (pin 11)
              10|-> BLANK (pin 23)          OUT4 |4     25|-> SCLK (pin 13)
               9|-> XLAT (pin 24)             .  |5     24|-> XLAT (pin 9)
               8|                             .  |6     23|-> BLANK (pin 10)
               7|                             .  |7     22|-> GND
               6|                             .  |8     21|-> VCC (+5V)
               5|                             .  |9     20|-> 2K Resistor -> GND
               4|                             .  |10    19|-> +5V (DCPRG)
               3|-> GSCLK (pin 18)            .  |11    18|-> GSCLK (pin 3)
               2|                             .  |12    17|-> SOUT
               1|                             .  |13    16|-> XERR
               0|                           OUT14|14    15| OUT channel 15
    ------------                                  --------

    -  Put the longer leg (anode) of the LEDs in the +5V and the shorter leg
         (cathode) in OUT(0-15).
    -  +5V from Arduino -> TLC pin 21 and 19     (VCC and DCPRG)
    -  GND from Arduino -> TLC pin 22 and 27     (GND and VPRG)
    -  digital 3        -> TLC pin 18            (GSCLK)
    -  digital 9        -> TLC pin 24            (XLAT)
    -  digital 10       -> TLC pin 23            (BLANK)
    -  digital 11       -> TLC pin 26            (SIN)
    -  digital 13       -> TLC pin 25            (SCLK)
    -  The 2K resistor between TLC pin 20 and GND will let ~20mA through each
       LED.  To be precise, it's I = 39.06 / R (in ohms).  This doesn't depend
       on the LED driving voltage.
    - (Optional): put a pull-up resistor (~10k) between +5V and BLANK so that
                  all the LEDs will turn off when the Arduino is reset.

    If you are daisy-chaining more than one TLC, connect the SOUT of the first
    TLC to the SIN of the next.  All the other pins should just be connected
    together:
        BLANK on Arduino -> BLANK of TLC1 -> BLANK of TLC2 -> ...
        XLAT on Arduino  -> XLAT of TLC1  -> XLAT of TLC2  -> ...
    The one exception is that each TLC needs it's own resistor between pin 20
    and GND.

    This library uses the PWM output ability of digital pins 3, 9, 10, and 11.
    Do not use analogWrite(...) on these pins.

    This sketch does the Knight Rider strobe across a line of LEDs.

    Alex Leone <acleone ~AT~ gmail.com>, 2009-02-03 */

#include "Tlc5940.h"

void setup()
{
  /* Call Tlc.init() to setup the tlc.
     You can optionally pass an initial PWM value (0 - 4095) for all channels.*/
  Tlc.init();
}

/* This loop will create a Knight Rider-like effect if you have LEDs plugged
   into all the TLC outputs.  NUM_TLCS is defined in "tlc_config.h" in the
   library folder.  After editing tlc_config.h for your setup, delete the
   Tlc5940.o file to save the changes. */

void loop()
{
  int direction = 1;
  for (int channel = 0; channel < NUM_TLCS * 16; channel += direction) {

    /* Tlc.clear() sets all the grayscale values to zero, but does not send
       them to the TLCs.  To actually send the data, call Tlc.update() */
    Tlc.clear();

    /* Tlc.set(channel (0-15), value (0-4095)) sets the grayscale value for
       one channel (15 is OUT15 on the first TLC, if multiple TLCs are daisy-
       chained, then channel = 16 would be OUT0 of the second TLC, etc.).

       value goes from off (0) to always on (4095).

       Like Tlc.clear(), this function only sets up the data, Tlc.update()
       will send the data. */
    if (channel == 0) {
      direction = 1;
    } else {
      Tlc.set(channel - 1, 1000);
    }
    Tlc.set(channel, 4095);
    if (channel != NUM_TLCS * 16 - 1) {
      Tlc.set(channel + 1, 1000);
    } else {
      direction = -1;
    }

    /* Tlc.update() sends the data to the TLCs.  This is when the LEDs will
       actually change. */
    Tlc.update();

    delay(75);
  }

}

 この最初のほうのコメントにアスキー・アートで書かれている図を見て結線するとよい。こんな感じだ。

IMG_3185

 LEDは秋葉原・千石電商の隣の店、「akiba LEDピカリ館」で売っていた10個入り300円の白色LEDで、Vfが3.0V~3.4V、Ifが20mAとある。電源が5Vならば100Ωばかり抵抗を付けてやればいい理屈だが、全部点灯させるとArduinoがダメになってしまうから、さらに絞って10KΩつけてやる。

 コンパイルして動かすとこうなる。

 10kΩでもこれくらい明るい。

 このICを使うと、パルス幅変調の幅も、Arduinoが256段階であるのに比べ、4096段階と格段に細かくなる。

 アレンジを加えてみよう。昨日買ってきたポテンショメータを使う。アナログの4番ピンと5番ピンに50kΩのポテンショメータと10kΩの抵抗をつなぎ、それぞれを強さと速さにして、「尾を引いたみたいに」明るさ制御をする。

 ポテンショメータの回路はこうする。

IMG_3191

 図の「E1」をアナログ入力で読めばよい。ポテンショメータのつまみの位置は、次の計算でR2を求めれば明らかになる。

E_{0} = I_{0}\cdot(R_{1} + R_{2})
I_{0} = \frac{E_{0}}{R_{1} + R_{2}}…①
I_{0} = \frac{E_{1}}{R_{2}}…②
① = ②
\frac{E_{0}}{R_{1} + R_{2}} = \frac{E_{1}}{R_{2}}
E_{0}\cdot R_{2} = E_{1}\cdot R_{1} + E_{1}\cdot R_{2}
R_{2}(E_{0} - E_{1}) = E_{1}\cdot R_{1}
R_{2} = \frac{E_{1}\cdot R_{1}}{E_{0}-E_{1}}

 組み付けるとこうなる。

IMG_3187

 動かすとこんな感じ。

 スケッチはこんな感じ。

//
//  wPotentio2tlc5940.ino
//    ポテンショメータとTLC5940でLチカ
//    27.08.02(日)0900~
//    佐藤俊夫
//
#include "Tlc5940.h"
//
const float
  R1 = 10000.0,     //  ポテンショメータ前の抵抗10kΩ, 
  E0 = 5.0,         //  電源電圧5V, 
  MAXVR = 50000.0;  //  ポテンショメータの最大抵抗
const unsigned int   VR1 = 4, VR2 = 5;  //  ポテンショメータはアナログピンのA4・A5
const unsigned int MAX_LED = 15;  //  LEDは0~15の16個
//
void setup()
{
  Tlc.init();
  pinMode(VR1, INPUT);
  pinMode(VR2, INPUT);
}

void loop()
{
  float vr1 = 0.0, vr2 = 0.0, e11 = 0.0, e21 = 0.0;
  static unsigned int topLed = 0, tailLen = 10;
  e11 = analogRead(VR1) * (5.0 / 1024);
  e21 = analogRead(VR2) * (5.0 / 1024);
  vr1 = (e11 * R1) / (E0 - e11);  //  明るさ
  vr2 = (e21 * R1) / (E0 - e21);  //  速さ
  if(++topLed > MAX_LED + tailLen)  topLed = 0;
  Tlc.clear();
  int bright = constrain(fmap(vr1, 0.0, MAXVR, 0, 4095), 0, 4095);
  Tlc.set(topLed, bright);
  for(int i = topLed - 1; i >= 0; i--){
    bright -= (4096 / tailLen);
    if(bright < 0) bright = 0;
    Tlc.set(i, bright);
  }
  Tlc.update();
  unsigned int delayTime = constrain(fmap(vr2, 0.0, MAXVR, 100, 10), 10, 100);
  delay(delayTime);
}
//
float fmap(float x, float in_min, float in_max, float out_min, float out_max) {
  //  もともとの「map()」がlong int型でこの用途に合わないので、float型を定義
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

ただのLチカがこれまた

投稿日:

 釣りは「へら鮒に始まりへら鮒に終わる」と言うそうだが、「ArduinoはLチカに始まりLチカに終わる」などと誰かが言っていそうで多分誰も言っていない(笑)。

 さておき、けっこう楽しいんだよな、Lチカ。

 で、なんっか、手持ちのものをいろいろとくっつけたくなるのだ。今日目に入ったのはSeeedstudio SIDEKICK BASIC KITに入っていた青いポテンショメータ。私が少年の頃は「バリオーム」「ボリューム」「可変抵抗」と言ったものだが、今はポテンショメータと言うそうな。

 ポテンショメータでLチカのスピードを調整してみよう。

 まず、ポテンショメータのスペックシートなどがなくてはっきりしないから、テスターを当てて抵抗を測る。0Ωから10.5kΩまで変化できることがわかった。

 このまま直列に+5Vを印加してアナログピンに入力してしまいそうだが、0Ωの時に過電流になってしまうから、10kΩの別の抵抗と直列に入れた方がいいだろう。そうするとポテンショメータを最小に回し切っても0.5mAくらいに抑えられる。

 計算はどうなるかというと、こんなようなことになる。

IMG_3161

 式に代入すれば、ポテンショメータを最大抵抗にしたとき2.44V、最小抵抗にしたとき0Vになることがわかる。

 プロトタイピングシールドのブレッドボードは小さくて全部の部品が載らないから、普段使っている普通のブレッドボードにつける。

IMG_3157

 動かすとこんな感じだ。

 スケッチはこんな感じ。

//
//  vr2speed.ino
//    ポテンショメータでLチカ制御
//    27.07.26(日)1300~
//    佐藤俊夫
//
const unsigned int
  STARTPIN  = 2,
  ENDPIN    = 8,
  INPUTPIN  = 9,
  VR        = 0,
  DELAYMIN  = 5,
  DELAYMAX  = 100;
const float
  V0 = 5.0,         //  +5V
  R1 = 10000.0,     //  アナログピンに入れるための電流制限抵抗10kΩ
  VRMIN = 0.0,      //  ポテンショメータの最小抵抗実測値 0Ω
  VRMAX = 10500.0;  //  ポテンショメータの最大抵抗実測値 10.5kΩ
//
void setup() {
  //  330Ωをカソードにそれぞれ入れてデジタル2~8番にLEDを繋いである。
  for(int i = STARTPIN; i <= ENDPIN; i++){
    pinMode(i, OUTPUT);
  }
  //  タクトスイッチは9番に繋いでアースし、内蔵プルアップ抵抗を使っている。
  pinMode(INPUTPIN, INPUT_PULLUP);
  //  ポテンショメータは10kΩ抵抗と直列に繋ぎ、間から出力を取っている。
  pinMode(VR, INPUT);
}

void loop() {
  static int i = STARTPIN, RLdirection = 1, delaytime = DELAYMIN;
  static unsigned long int prevtime = 0;
  if(prevtime + delaytime < millis()){
    digitalWrite(i, LOW);
    i += RLdirection;
    if(i > ENDPIN) i = STARTPIN;
    if(i < STARTPIN) i = ENDPIN;
    digitalWrite(i, HIGH);
    prevtime = millis();
  }
  if(digitalRead(INPUTPIN) == LOW){
    delay(500);
    RLdirection *= -1;
  }
  float v1 = (V0 * R1) / (R1 + VRMAX);
  float vr = analogRead(VR) * (V0 / 1024);
  delaytime = constrain(fmap(vr, v1, 0.0, DELAYMAX, DELAYMIN), DELAYMIN, DELAYMAX);
}

float fmap(float x, float in_min, float in_max, float out_min, float out_max) {
  //  もともとの「map()」がlong int型でこの用途に合わないので、float型を定義
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}




出来る限り美しく

投稿日:

 同じLチカをやるのでも、単線タイプのジャンプワイヤをちゃんと使い、できる限りブレッドボード上を整然と配置してみた。これまではあまりそんなことは考えていなかったからだ。

 とりあえず持っているLEDを持っている330Ωの電流制御抵抗の個数の限り配置した。タクトスイッチをつけて、入力を受け付けるようにする。とりあえず、LEDの点滅が右から左へ流れ、タクトスイッチを押すたびに左右の向きが入れ替わる、というふうにしよう。

IMG_3153

 タクトスイッチの入力にプルダウン抵抗を取り付けるスペースがなくなってしまったので、内蔵プルアップ抵抗を使うことにし、負論理にする。

 動かすとこんな感じだ。

 スケッチはこんな感じ。

//
//  smartBreadboard.ino
//    出来るだけ美しくブレッドボードを作ってみた。
//    27.07.26(日)0800~
//    佐藤俊夫
//
const unsigned int
  STARTPIN  = 2,
  ENDPIN    = 8,
  INPUTPIN  = 9,
  DELAYTIME = 50;
//
void setup() {
  //  330Ωをカソードにそれぞれ入れてデジタル2~8番にLEDを繋いである。
  for(int i = STARTPIN; i <= ENDPIN; i++){
    pinMode(i, OUTPUT);
  }
  //  タクトスイッチは9番に繋いでアースし、内蔵プルアップ抵抗を使っている。
  pinMode(INPUTPIN, INPUT_PULLUP);
}

void loop() {
  static int i = STARTPIN, j = 1;
  static unsigned long int prevtime = 0;
  if(prevtime + DELAYTIME < millis()){
    digitalWrite(i, LOW);
    i += j;
    if(i > ENDPIN) i = STARTPIN;
    if(i < STARTPIN) i = ENDPIN;
    digitalWrite(i, HIGH);
    prevtime = millis();
  }
  if(digitalRead(INPUTPIN) == LOW){
    delay(500 );
    j *= -1;
  }
}

空の写真リベンジ

投稿日:

 先週試したAdafruit製の「小型TTLシリアルjpegカメラ」での間欠撮影先週はどうしたわけか同じ画像ばかり撮れてしまい、失敗である。

 (チナミに、このカメラのメーカーの「Adafruit」という会社、有名なマッシモ・バンジのTEDの中で紹介されていたことに気付いた。)

https://youtube.com/watch?v=UoBUXOOdLXY%3Ft%3D5m50s

 気を取り直して、スケッチを直す。撮影時のカメラのステータスを確認し、撮れていなければ何回でも撮り続ける。

「while(撮れてない)撮る;」

……というわけだ。まあ、万が一ハードウェアエラーなどがあるとループが回り続けるので良くないが、ループが回り続けようが結局のところはモノとしては電源を入れ直す他にどうしようもないので、こんなものだろう。

 それと、撮影が終わったらカメラをそのつどリセットすることにした。また、既に存在するファイル名は避けるようにした。こういう時、Arduinoには書式文字列付きの「sprintf」がないので、少し不便だなと思う。

 夜明けから日没までの一日の空の雲を撮りたいので、天気予報を見て雨が降らぬ確信を持ってから、昨夜寝る前にベランダにカメラをセットしておいた。朝早く起きるより楽だからだ。夜のうちに1000枚くらい写真が撮れてしまうが、SDカードには余裕があるので大丈夫である。

 昼間は用事があるのでカメラの面倒は見れないが、放置しておけば淡々と写真は撮れていく。

IMG_3143

 で、撮れた写真をWindows Movie Makerに流し込むと、微速撮影動画の一丁上がりだ。

 スケッチは次のとおりである。

//
//  camera2Web.ino
//    27.07.20(月) 0850~
//    佐藤俊夫
//    Adafruit製小型TTLシリアルJPEGカメラ+ETHERNET SHIELD 2で
//    間欠撮影をし、Webでダウンロードできるようにする。
//
#include <Adafruit_VC0706.h>
#include <SPI.h>
#include <SD.h>
#include <SoftwareSerial.h>
#include <Ethernet2.h>

#define CHIPSELECT 4

SoftwareSerial CAMCONNECTION(2, 3);
Adafruit_VC0706 CAM = Adafruit_VC0706(&CAMCONNECTION);
const unsigned long int INTERVAL = 30L * 1000L;
byte MAC[] = {  0x90, 0xA2, 0xDA, 0x0F, 0xF6, 0x74 };
IPAddress IP(192, 168, 1, 129);
EthernetServer SERVER(80);
EthernetClient CLIENT;

void setup() {
  pinMode(10, OUTPUT);
  if(!SD.begin(CHIPSELECT)) return;
  if(!CAM.begin()) return;
  CAM.setImageSize(VC0706_320x240);
  Ethernet.begin(MAC, IP);
  SERVER.begin();
  delay(1000);
}

void loop() {
  static unsigned long int prevtime = 0;
  char c;
  String rstr = "";
  //  INTERVALおきに写真を撮る
  if(millis() >= prevtime + INTERVAL){
    prevtime = millis();
    takePicture();
  }
  //  Webサーバ
  CLIENT = SERVER.available();
  if(CLIENT) {
    while(CLIENT.connected()) {
      if(CLIENT.available()) {
        c = CLIENT.read();
        rstr += c;
        if(rstr.endsWith("\r\n")){
          break;
        }
      }
    }
    if(rstr.indexOf("IMG") >= 0){
      String filename = "DCIM/";
      char cfilename[17];
      filename.concat(rstr.substring(rstr.indexOf("IMG"), rstr.indexOf("JPG") + 3));
      filename.toCharArray(cfilename, 17);
      CLIENT.println("HTTP/1.1 200 OK");
      CLIENT.println("Content-Type: image/jpg");
      CLIENT.println("Connection: close");
      CLIENT.println();
      File img = SD.open(cfilename);
      while(img.available()){
        CLIENT.write(img.read());
      }
      img.close();
    }else{
      sendform();
    }
    rstr = "";
    delay(1);
    // close the connection:
    CLIENT.stop();
  }
  delay(20);
}

void sendform(){
  //  フォームを送る。
  CLIENT.println("HTTP/1.1 200 OK");
  CLIENT.println("Content-Type: text/html");
  CLIENT.println("Connection: close");
  CLIENT.println();
  CLIENT.println("<!DOCTYPE HTML>");
  CLIENT.println("<html><head></head><body><center>");
  File dcim = SD.open("/DCIM");
  while(true) {
    File imgfile =  dcim.openNextFile();
    if(!imgfile){
      dcim.rewindDirectory();
      break;
    }
    CLIENT.write("<a href=\"");
    CLIENT.write(imgfile.name());
    CLIENT.write("\">");    
    CLIENT.write(imgfile.name());
    CLIENT.println("</a><br>");
    imgfile.close();    
  }
  dcim.close();
  CLIENT.println("</center></body></html>");
}

void takePicture(){
  static unsigned int pnum = 0;
  char filename[] = "DCIM/img0000.jpg";
  while(!CAM.takePicture());
  do{
    filename[8]  = '0' + pnum / 1000;
    filename[9]  = '0' + (pnum / 100) % 10;
    filename[10] = '0' + (pnum /  10) % 10;
    filename[11] = '0' + pnum % 10;
    pnum ++;
  }while(SD.exists(filename));
  if(pnum > 9999) pnum = 0;
  File imgFile = SD.open(filename, FILE_WRITE);
  uint16_t jpglen = CAM.frameLength();
  pinMode(8, OUTPUT);
  while (jpglen > 0) {
    uint8_t *buffer;
    uint8_t bytesToRead = min(32, jpglen);
    buffer = CAM.readPicture(bytesToRead);
    imgFile.write(buffer, bytesToRead);
    jpglen -= bytesToRead;
  }
  while(!CAM.reset());
  imgFile.close();
}




リモコンでLEDコントロール

投稿日:

 秋月電子で買ったリモコン、せっかくだから、これでLEDを点けたり消したりしてみよう。ただ単に点滅ではいまいち芸がないから、3色LEDの照度を多段階に変えたり、色をいろいろに変えたりしてみようではないか。

 買ってきたリモコン

 IR受信ライブラリを使ってみたが、どうも安定しない。リモコンからはコードが連続送出されるようなのだが、受信ごとに違う値が返ってきて困る。

 調べてみると、0xffffff、すなわち24ビットを超える値が返ってくるときはどうやら受信がうまく行っていないことがわかったので、これを排除してみたところ、うまくいくようだ。

 そこを通り抜けると、今度はどうも、使用するピンの組み合わせに約束があるようだ。はっきりとはわからないのだが、PWMを9・10・11、IRリモコン受信モジュールを12で使うと、さっぱりうまく行かない。

 いろいろと変えて、LEDのためのPWMをR・G・Bそれぞれ9・5・6に割り付けるとうまくいくことがわかった。……理由がなんだかよくわからないのだが(笑)。

 スケッチは結局こうなった。

//
//  IR2LED.ino
//    赤外線リモコン「DFR0107」(DFROBOT社)でLEDをコントロールする。
//    https://satotoshio.net/blog/?p=1490
//    27.7.11(土) 1755~
//    佐藤俊夫
//    
#include <IRremote.h>

const int LEDR = 9, LEDG = 5, LEDB = 6, IRR = 12;
IRrecv irrecv(IRR);
decode_results results;

void setup()
{
  irrecv.enableIRIn(); // Start the receiver
  pinMode(LEDR, OUTPUT);
  pinMode(LEDG, OUTPUT);
  pinMode(LEDB, OUTPUT);
  pinMode(IRR, INPUT);  
}

void loop() {
  if (irrecv.decode(&results)) {
    if(results.value <= 0xffffff && results.value > 0xfd0000){
      processValue(results.value);
    }      
    irrecv.resume(); // Receive the next value
  }
}

void processValue(long int value){
  static boolean ledOn = true;
  static unsigned int r = 255, g = 255, b = 255, combi = 0x07;
  switch(value){
    case 0xfd00ff:  //  vol+
      if(ledOn == true){
        ledOn = false;
      }else{
        ledOn = true;
      }
      break;
    case 0xfd807f:  //  vol-
      if(r < 255 - 10) r += 10;
      if(g < 255 - 10) g += 10;
      if(b < 255 - 10) b += 10;
      break;
    case 0xfd906f:
      if(r > 0 + 10) r -= 10;
      if(g > 0 + 10) g -= 10;
      if(b > 0 + 10) b -= 10;
      break;
    case 0xfd609f:  // >>|
      if(combi < 0x07){
        combi++;
      }else{
        combi = 0x01;
      }
      break;
    case 0xfd20df:  // |<<
      if(combi > 0x01){
        combi --;
      }else{
        combi = 0x07;
      }
      break;
    default:
      break;
  }
  controlLED(ledOn, r, g, b, combi);

}

void controlLED(const boolean on, const int r, const int g, const int b, const int combi){
  unsigned int ron = 0, gon = 0, bon = 0;
  
  ron = (0x04 & combi) > 0;
  gon = (0x02 & combi) > 0;
  bon = (0x01 & combi) > 0;
  delay(20);
  if(on){
    analogWrite(LEDR, (255 - r * ron));
    analogWrite(LEDG, (255 - g * gon));
    analogWrite(LEDB, (255 - b * bon));
  }else{
    analogWrite(LEDR, 255);
    analogWrite(LEDG, 255);
    analogWrite(LEDB, 255);
  }
}

ウェブ扇風機

投稿日:

 昨日試した扇風機遊びを少し進め、温度制御を付けてみたい。

 おあつらえ向きに、最初に買った「Seeedstudio SIDEKICK BASIC KIT」には、サーミスタが入っている。これで温度を検知して、温度ごとに扇風機の回転を制御するわけだ。値の変更などはETHERNET SHIELD 2をつなぎ、ウェブインターフェイスで行うと面白いだろう。

 以前にも試したが、しかし、このキット付属のサーミスタは情報が少なくて困る。そこで、ちゃんと計算してそれなりの温度測定をしてみたい。以前は測りたい温度近傍の特性値をテーブルから拾って2次式で近似しただけであった。

 スペックシートによれば、-55℃で10583.3Ω、+125℃で1.277Ωになる、とある。常温付近では0℃で190.07Ω、40℃で24.87Ωだ。もしサーミスタ直付けでArduinoから5V給電すれば、-55℃のときは0.47mAだが、0℃で26.3mA、40℃で201mAと、Arduinoに流せる電流の20mAを大きく逸脱してしまう。

 40度付近でも大丈夫なように、抵抗を付加しなければならない。40℃の時に流したい電流を5mAと仮定すれば、

IMG_3075

……というような計算で975Ωくらいつなげておけばよいということになる。

 しかし、手持ちの抵抗は、キットに入っていた330Ω・1kΩ・10kΩの3種類しかないから、これで賄うしかない。

 一番大きい抵抗は10kΩだから、これで計算しなおすと、40℃の時で

5V / (24.87Ω + 10kΩ) = 0.5mA

2番目は1kΩ、同じく40℃の時で

5V / (24.87Ω + 1kΩ) = 4.88mA

同様に3番目の330Ωだと

5V / (24.87Ω + 330Ω) = 14mA

…ということになる。間をとって、1kΩで回路を作ってみよう。

 次に、サーミスタは抵抗から温度を知る。一方、Arduinoは電圧からデジタル値を知る。したがって、電圧からまず抵抗値を知らなければその先の温度測定に進めない。

 先の電流調整用の1kΩ抵抗をR0として含め、現在のサーミスタの抵抗値を知るには、一般に式は次のようになろう。

IMG_3079

 これをソースコードに表せば、次のようになる。

  const float v0 = 5.0, r0 = 1000.0;  //  Arduino +5Vと電流調整抵抗1kΩ
  const int resolution = 1024;  //  アナログ入力の分解能
  int srcVal = 0;
  float vt = 0.0, rt = 0.0;
  
  srcVal = analogRead(THERMISTOR);
  vt = srcVal * (v0 / (resolution - 1));
  rt = (v0 * r0 - vt * r0) / vt;

 次に、知った抵抗値から温度を知る計算である。

 サーミスタの抵抗は対数特性を持っているので、関数は対数モデルになる。また、サーミスタの特性を表す重要な値は「B値」と呼ばれるものと、Ta(温度)、R0(抵抗)の3つで、それらはスペックシートに書いてある。

 TaとR0については、「温度がTaのとき、抵抗はR0になる」というものだ。私の手元のサーミスタは、スペックシートによると、

Ta = 25℃
R0 = 50kΩ

……とある。

 B値は「抵抗の対数と、温度の比」である。これもスペックシートに関係式が書いてある。

 これらのスペックシートの値と、知った抵抗値から温度を求める式は、次のようになる。

IMG_3080

 これを、先の抵抗値を知る部分と併せて、Arduinoで使える関数にすれば、このようになろうか。

float tempMesure(){
  const float B = 4350.0, Ta = 25.0, Rt0 = 50000.0;  //  MF11-503Kスペックシート記載
  const float K = 273.15;  //  熱力学温度の定数
  const float v0 = 5.0, r0 = 1000.0;  //  Arduino +5Vと電流調整抵抗1kΩ
  const int resolution = 1024;  //  アナログ入力の分解能
  int srcVal = 0;
  float vt = 0.0, rt = 0.0;
  
  srcVal = analogRead(THERMISTOR);
  vt = srcVal * (v0 / (resolution - 1));
  rt = (v0 * r0 - vt * r0) / vt;
  return(1.0 / (log(rt / Rt0) / B + 1.0 / (Ta + K)) - K);
}

 これを用いて、少し真面目っぽい温度測定スケッチを書けば、次のようになる。

//
//  thermistor2temp.ino
//    サーミスタでわりと真面目に温度を測る。
//    27.7.5(日)
//    佐藤俊夫
//
const int THERMISTOR = 1;

void setup() 
{ 
  Serial.begin(9600);
} 
 
void loop() 
{ 
  float t = 0.0;
  
  t = tempMesure();
  Serial.print("Temp = ");
  Serial.print(t);
  Serial.println("C");
  delay(500);
}

float tempMesure(){
  const float B = 4350.0, Ta = 25.0, Rt0 = 50000.0;  //  MF11-503Kスペックシート記載
  const float K = 273.15;  //  熱力学温度の定数
  const float v0 = 5.0, r0 = 1000.0;  //  Arduino +5Vと電流調整抵抗1kΩ
  const int resolution = 1024;  //  アナログ入力の分解能
  int srcVal = 0;
  float vt = 0.0, rt = 0.0;
  
  srcVal = analogRead(THERMISTOR);
  vt = srcVal * (v0 / (resolution - 1));
  rt = (v0 * r0 - vt * r0) / vt;
  return(1.0 / (log(rt / Rt0) / B + 1.0 / (Ta + K)) - K);
}

 次に、温度に応じて扇風機の回転数が変わるようにしよう。先日作った「ソリッドステート・リレーモジュール」を遺憾なく使用する。

ソリッドステート・リレーモジュール
IMG_3081

 このモジュールの内部には、秋月電子の「ソリッド・ステート・リレー(SSR)キット 25A(20A)タイプ」が組み付けてある。

 27℃で1/fゆらぎエフェクト、28℃で弱風、29℃で強風、とでもしてみようか。1/fゆらぎエフェクトには、先週書いた関数をそのままコピペする。

IMG_3083

//
//  thermistor2windFan.ino
//    サーミスタで温度を測り、扇風機を制御する。
//    27.7.5(日)
//    佐藤俊夫
//
const int THERMISTOR = 1, WINDFAN = 9;
void setup() 
{ 
  Serial.begin(9600);
  pinMode(WINDFAN, OUTPUT);
} 
 
void loop() 
{ 
  const int half = 128, full = 255;
  const float lowTemp = 27.0, midTemp = 28.0, highTemp = 29.0; 
  float t = 0.0, f = 0.0;
  
  t = tempMesure();
  Serial.print("temp=");
  Serial.println(t);
  if(t > highTemp){
    analogWrite(WINDFAN, full);
  }else
  if(t > midTemp){
    analogWrite(WINDFAN, half);
  }else
  if(t > lowTemp){
    f = f1Fluctuation();
    analogWrite(WINDFAN, f);
  }else{
    analogWrite(WINDFAN, 0);
  }
  delay(20);
}

float tempMesure(){
  const float B = 4350.0, Ta = 25.0, Rt0 = 50000.0;  //  MF11-503Kスペックシート記載
  const float K = 273.15;  //  熱力学温度の定数
  const float v0 = 5.0, r0 = 1000.0;  //  Arduino +5Vと電流調整抵抗1kΩ
  const int resolution = 1024;  //  アナログ入力の分解能
  int srcVal = 0;
  float vt = 0.0, rt = 0.0;
  
  srcVal = analogRead(THERMISTOR);
  vt = srcVal * (v0 / (resolution - 1));
  rt = (v0 * r0 - vt * r0) / vt;
  return(1.0 / (log(rt / Rt0) / B + 1.0 / (Ta + K)) - K);
}

int f1Fluctuation(){
  static float x = 0.1;
  if(x < 0.5){
    x = x + 2 * x * x;
  } 
  else {
    x = x - 2 * (1.0 - x) * (1.0 - x);
  }
  if(x < 0.05 || x > 0.995){
    x = random(10, 90) / 100.0;
  }
  return((int)(x * 255));
}

 回路図など、描くも愚かというか、こんな簡単なものである。

IMG_3084

 さて次に、ETHERNET SHIELD 2をつなぎ、この扇風機をWeb化する。昨日買っておいた「クリアランス確保用ピンソケット」が役に立つ。

IMG_3067

 組み付けるとこんな感じである。回路はネットにつながない場合と同じでよい。

IMG_3087

 こんなインターフェイスで動かす。

ネット扇風機インターフェイス

 設定した温度になると扇風機が回る。

IMG_3088

 スケッチはこのようになる。

//
//  web2thermistor_windFan.ino
//    サーミスタで温度を測り、扇風機を制御する。
//    27.7.5(日)
//    佐藤俊夫
//
#include <SPI.h>
#include <Ethernet2.h>
//
byte mac[] = {
  0x90, 0xA2, 0xDA, 0x0F, 0xF6, 0x74
};
IPAddress ip(192, 168, 1, 129);
EthernetServer SERVER(80);
EthernetClient CLIENT;
const int THERMISTOR = 1, WINDFAN = 9;
//
void setup() 
{ 
  Ethernet.begin(mac, ip);
  SERVER.begin();
  Serial.begin(9600);
  pinMode(WINDFAN, OUTPUT);
} 
 
void loop() 
{ 
  const int half = 128, full = 255;
  static float lowTemp = 27.0, midTemp = 28.0, highTemp = 29.0; 
  float t = 0.0, f = 0.0;
  //  Webサーバの動作
  char c;
  String rstr = "";
  CLIENT = SERVER.available();
  if (CLIENT) {
    while (CLIENT.connected()) {
      if (CLIENT.available()) {
        c = CLIENT.read();
        rstr += c;
        if(rstr.endsWith("\r\n")){
          break;
        }
      }
    }
    if(rstr.indexOf("low=") >= 0){
      lowTemp = rstr.substring(rstr.indexOf("low=") + 4, rstr.indexOf("&green=")).toInt();
      midTemp = rstr.substring(rstr.indexOf("mid=") + 4, rstr.indexOf("&blue=")).toInt();
      highTemp = rstr.substring(rstr.indexOf("high=") + 5, rstr.indexOf("&end")).toInt();
    }
    rstr = "";
    sendform(lowTemp, midTemp, highTemp);
    delay(1);
    // close the connection:
    CLIENT.stop();
  }
  // 温度測定
  t = tempMesure();
  Serial.print("temp=");
  Serial.println(t);
  if(t > highTemp){
    analogWrite(WINDFAN, full);
    Serial.println("high");
  }else
  if(t > midTemp){
    analogWrite(WINDFAN, half);
  }else
  if(t > lowTemp){
    f = f1Fluctuation();
    analogWrite(WINDFAN, f);
  }else{
    analogWrite(WINDFAN, 0);
  }
  delay(20);
}

float tempMesure(){
  //  Seeedstudio SIDEKICK BASIC KIT付属のサーミスタ「MF11-503K」で
  //  温度を測る。
  const float B = 4350.0, Ta = 25.0, Rt0 = 50000.0;  //  MF11-503Kスペックシート記載
  const float K = 273.15;  //  熱力学温度の定数
  const float v0 = 5.0, r0 = 1000.0;  //  Arduino +5Vと電流調整抵抗1kΩ
  const int resolution = 1024;  //  アナログ入力の分解能
  int srcVal = 0;
  float vt = 0.0, rt = 0.0;
  
  srcVal = analogRead(THERMISTOR);
  vt = srcVal * (v0 / (resolution - 1));
  rt = (v0 * r0 - vt * r0) / vt;
  return(1.0 / (log(rt / Rt0) / B + 1.0 / (Ta + K)) - K);
}

int f1Fluctuation(){
  //  間欠カオス法により0~255の間で1/fゆらぎを生成して返す。
  static float x = 0.1;
  if(x < 0.5){
    x = x + 2 * x * x;
  } 
  else {
    x = x - 2 * (1.0 - x) * (1.0 - x);
  }
  if(x < 0.05 || x > 0.995){
    x = random(10, 90) / 100.0;
  }
  return((int)(x * 255));
}

void sendform(float lowTemp, float midTemp, float highTemp){
  //  フォームを送る。
  char* formFirstHalf[] = {
    "<html>",
    "  <head>",
    "    <meta charset=\"utf-8\">",
    "  </head>",
    "  <body bgcolor='#ddddff'>",
    "    <center>",
    "      <h1>Arduino ネット扇風機</h1>",
    "      <form method='GET'>",
    "        <table>",
    "          <tr>",
    "  	    <th>ゆらぎ送風温度</th>",
    "  	    <th>弱風温度</th>",
    "  	    <th>強風温度</th>",
    "	  </tr>"
  };  //  14 num.
  char* formSecondHalf[] = {
    "        </table>",
    "        <input type='hidden' name='end'>",
    "        <input type='submit' value='セット'>",
    "      </form>",
    "    </center>",
    "  </body>",
    "</html>"
  };  // 7 num.
  int i = 0;

  CLIENT.println("HTTP/1.1 200 OK");
  CLIENT.println("Content-Type: text/html");
  CLIENT.println("Connection: close");
  CLIENT.println();
  CLIENT.println("<!DOCTYPE HTML>");
  for(i = 0; i < 14; i++){
    CLIENT.println(formFirstHalf[i]);
  }
  CLIENT.println("          <tr>");
  CLIENT.println("            <td>");
  CLIENT.println("           <input type='text' name='low' size='6em' value =");
  CLIENT.print(lowTemp);
  CLIENT.println(">");
  CLIENT.println("            </td>");
  CLIENT.println("            <td>");
  CLIENT.println("           <input type='text' name='mid' size='6em' value =");
  CLIENT.print(midTemp);
  CLIENT.println(">");
  CLIENT.println("            </td>");
  CLIENT.println("            <td>");
  CLIENT.println("           <input type='text' name='high' size='6em' value =");
  CLIENT.print(highTemp);
  CLIENT.println(">");
  CLIENT.println("            </td>");
  CLIENT.println("          </tr>");
  for(i = 0; i < 7; i++){
    CLIENT.println(formSecondHalf[i]);
  }

}






自然風もどき扇風機

投稿日:

 1000円ほどで買った安物の扇風機にArduinoその他をつなぎ、自然風もどきの送風機能を実装してみる。

 先週作った「AC100Vオン・オフモジュール」と、1/fゆらぎエフェクトをかけたランプのスケッチをそのまま使う。

 先週のLチカの、赤色LEDの線をそのままSSRの+5Vロジック・インへ、それから、Lチカはアノード・コモンのLEDを使ったためにArduinoの+5Vに接続していたから、これをGNDにつなぎかえてSSRの+-0Vへ入れる。

 これを試そうという方がいたら、使う扇風機についてご注意いただきたい。必ず、ここで使っているような、電子的な制御がかかっていない、AC100Vがモーターに直接かかるような、安物の簡素な扇風機を使わないといけない。

1/fゆらぎでLチカ

投稿日:

 さて、他の人もよくやっている「1/fゆらぎのLチカ」を、私もマネしてやってみる。

 こちらこちらのサイトを参考にさせていただく。よく使われるのはこの「間欠カオス法」だそうである。

間欠カオス法
0.0\leqq x\leqq 1.0として
x<0.5のときx=x+2x^2
x\geqq 0.5のときx=x-2(1-x)^2

 ただし、参考にさせていただいた各サイトによると、この間欠カオス法は、0.0付近や1.0付近に値が貼り付き易いので、0.0や1.0に近くなったら乱数を入れてやるとよいとのことである。実際に試すと、たしかに、長時間ちらつきがなくなったり、消えたままになったりしやすい。そこで、そうなったときに乱数を入れ、中間付近の適当な輝度で光らせるようにしてある。

 青色要素を少なくして、ろうそくの色合い風なちょっと黄色味がかった色にした。

//
//  f1Fluctuation.ino
//    1/fゆらぎでLチカ
//    佐藤俊夫
//    27.06.28(日)1700~
//
const int R = 9, G = 10, B = 11;
//
void setup() {
  pinMode(R, OUTPUT);
  pinMode(G, OUTPUT);
  pinMode(B, OUTPUT);
}

void loop() {
  int f = 0.0;
  
  f = f1Fluctuation();
  analogWrite(R, 255 - f);
  analogWrite(G, 255 - f);
  analogWrite(B, 255 - (f * 0.2));
  delay(20);
}


int f1Fluctuation(){
  static float x = 0.1;
  if(x < 0.5){
    x = x + 2 * x * x;
  } 
  else {
    x = x - 2 * (1.0 - x) * (1.0 - x);
  }
  if(x < 0.05 || x > 0.995){
    x = random(10, 90) / 100.0;
  }
  return((int)(x * 255));
}