暑熱をばひとつ

投稿日:

 黙々と呟き続ける我が作品、「ネット便器」である。いや、便器そのものを作ったのはINAX社であるから、私の作品と言うこともあるまいが、まあ、こんな下品かつ無意味なものを作ることができるのもDIY、というかMAKERS精神なればこそ、である。

ツイートする私の作品「ネット便器」(笑)

 ちなみに、こういう手作りは、数年前からDIYとは言わず、Makersムーブメントと言うようになったのだそうな。DIYとの違いは、ざっくり言えばネットのあるなしである。

 それにしても、暑い。暑熱である。秋とは暦ばかり、なんて暑いんだ。

 私の家には温度計がないのだが、今日のような折ふし、たまさかには室温が知りたくもなる。知ったところで「うわっ32度だってよ余計に暑くなったゾなんてこったいッ!」などとうわ言のようにうそぶきつつ興奮する以外にないのだが、それでもやっぱり知りたいのである。

 エアコンのリモコンに設定温度とは別に温度計がついており、一応それで用は足りているのだが、1℃単位のザックリした温度計なので、不満である。

 こんなこともあろうかと、私こと佐藤は常々周到怠りない。我が作品「ネット便器」は、気温をツイートできるのだ!!トイレに行き、便器のフタを開け閉めしてから部屋に戻り、ツイッターを見ると、自宅の気温がだいたいわかるわけである。おお、なんとスンバラシイ。Arduino万歳。とっとと内紛やめて楽しくやろうぜベイベー!!

 ……。

 めんどくさい。

 だいたい、気温ぐらいその場でわかるようにすべきではなかったのか。便器のフタを開け閉めしてツイッター見なきゃ気温が分からん家なんて、どうなっとるんだ一体ッ!?。ネット便器の本体に気温を表示すべきだ!!っていうか、なんで便所で気温を測らねばならんのだ!!

 というわけで、発作的に自宅を飛び出し、向かったのは八潮の秋月電子である。

 「どうして近所の100円ショップで温度計を買わんのだ?」という愚問は禁止の方向でお願いしたい。

 秋葉原に行けばよいのだが、自宅からは八潮の秋月電子のほうが近いのである。それに、秋葉原の秋月電子は、人でごった返して足の踏み場がなく、店頭で品定めをする余裕が全くない。八潮の秋月電子は空いているので、店内でのんべんだらりとデータブックを読みながら部品を選ぶことも可能である。

 目当ては、日立「HD44780」という液晶ドライバの、互換ICを搭載した液晶ディスプレイである。大概の液晶ディスプレイは、この30年も前に開発された名作IC互換になっているのである。

 他に、7セグメントLEDで気温を表示させることも考えたが、実は思いのほか、Arduinoでの表示に限っては液晶ディスプレイのほうがラクなのだ。7セグメントLEDは簡素なだけに意外に奥が深く、多くの桁を表示させるためのダイナミック点灯やその明るさ補償、足りない電流を他の電源から持って来るなど、やることが多い。

 さて、秋月電子八潮店である。

 店内にはズラリと液晶ディスプレイが並んでいる。手ごろなところで、バックライト付きの液晶ディスプレイ、「SD1602 HUOB-XA」という型番のものを購入した。900円。

 他に、後で遊ぶためにアノードコモンの7セグメントLEDを買う。これは例の「TLC5940NT」に接続して遊ぶのである。ひとつ60円。

 それから、切らしてしまったQIコネクタのピン端子も買う。シースが見当たらないので、店員さんに「これのシースありませんか」と聞くと、ハウジングのことですか?この端子にはハウジングみたいなものはありませんよ、と答えるではないか。うーん。秋葉原の千石電商なら、左奥の抽斗にザクザク入っているのだが、どうも、八潮の秋月電子にはないらしい。というか、実は八潮の秋月の店員さん、QIコネクタにはシースがあるってことを知らんのではなかろうか。

 それはそれとして……。

今日買ったもの
IMG_3220

 帰宅して早速とりかかる。

 製品はこういうものがビニール袋に封入されているので、付属のピンヘッダを半田付けする必要がある。ちょいちょいちょい、と素早い仕事だ。

ピンヘッダをつける
IMG_3224
IMG_3225

ちょいちょいっとな、……っと。
IMG_3230

 ネットで情報を漁る。

 あるサイトによると、基盤ウラの「J3」というプリントをショートし、「R9」というプリントに100Ωの抵抗を付けると、基盤の電源でバックライトが光らせられる、とあるので、早速真似をする。

 ところが、他の回路とともに作動させてみると、どうも不安定である。バックライトの電流は、データシートによると40mAとある。電流を実回路で測定してみたところ、データシートに記載の値よりは少ないものの、37~38mAくらい流れていることが分かった。Arduinoで安心して流せるのは20mAまでなので、これはどうも過大かもしれない。Arduinoは50mAくらいまで流すことができるが、余裕は十分にあったほうがよいだろう、ということで、R9に取り付けた100Ωのジャンプ抵抗は取り外した。

 液晶ディスプレイのみ単体ならば余裕はあるものの、他の回路を接続するのであれば外部電源で点灯した方が良いように思われる。

 で、データシートと、Arduino IDEの「サンプルスケッチ」の中にある「LiquidCrystal」のコメントを参考にブレッドボードを結線する。ブレッドボードには「Seeedstudio SIDEKICK BASIC KIT」に入っていたサーミスタを、1kΩの抵抗とともに取り付けてアナログ1番ピンに入れる。

ブレッドボードの様子
IMG_3233

回路図
「暑熱をばひとつ」の回路図

 スケッチはこんなふうにゴリゴリと書いて、動けとばかりArduinoに注入し、荒い息を吐く。

//
//  thermistor2LCD.ino
//    サーミスタで気温を測り、LCDに表示する。
//    佐藤俊夫
//    27.08.09(日) 1900~
//
#include <stdio.h>
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
const int THERMISTOR = 1;

void setup() {
  lcd.begin(16, 2);
  pinMode(THERMISTOR, INPUT);
}

void loop() {
  char tempStr[16], dispStr[32];
  lcd.setCursor(0, 0);
  dtostrf(tempMesure(), 5, 2, tempStr);
  sprintf(dispStr, "Temp. %s C", tempStr);
  lcd.print(dispStr);
  delay(500);
}
//
float tempMesure(){
  const float B = 4350.0, Ta = 25.0, Rt0 = 50000.0;  //  MF11-503Kスペックシート記載
  const float K = 273.15;  //  熱力学温度の定数
  const float v0 = 5.0, r0 = 1000.0;  //  Arduino +5Vと電流調整抵抗1kΩ
  const int resolution = 1024;  //  アナログ入力の分解能
  int srcVal = 0;
  float vt = 0.0, rt = 0.0;
  
  srcVal = analogRead(THERMISTOR);
  vt = srcVal * (v0 / (resolution - 1));
  rt = (v0 * r0 - vt * r0) / vt;
  return(1.0 / (log(rt / Rt0) / B + 1.0 / (Ta + K)) - K);
}

 こうして、液晶ディスプレイに気温が表示できるようになった。

……ていうか、暑ッ!(笑)
IMG_3232



よっしゃ便所の

投稿日:

 ……何しろ暑いので、思いついて、今度はサーミスタを取り付け、便所の温度をも便器に報告させることにした。

 回路図は今度もごく簡単である。

tweetToilet2-2

 現在のスケッチは下のとおりだ。

//
//  つぶやき便所 tweetToilet2.ino
//    27.08.08(土) 1900~
//    佐藤俊夫
//    チルトスイッチで便所のふたの動きを検出し、呟かせる。
//    温度を定期的に報告させるよう機能追加。
//
#include <SPI.h>
#include <Ethernet2.h>
#include <Twitter.h>
#include <stdio.h>
//
byte MAC[] = { 0x90, 0xA2, 0xDA, 0x0F, 0xF6, 0x74 };
IPAddress IP(192, 168, 1, 129);
Twitter TWITTER("取得したトークンをここに書く。");  //  トークン
const int TILTSW = 9;
const int THERMISTOR = 1;
const unsigned long int TEMPINTERVAL = 1000 * 60 * 5;  //  ミリ秒単位で5分
//
void setup()
{
  pinMode(TILTSW, INPUT);
  pinMode(THERMISTOR, INPUT);
  delay(1000);
  Ethernet.begin(MAC, IP);
  delay(1000);
}

void loop()
{
  static int tiltSwStatus = LOW, prevStatus = LOW;
  int i = 0;
  tiltSwStatus = tiltSw();
  if(tiltSwStatus != prevStatus){
    prevStatus = tiltSwStatus;
    tweetMsg(tiltSwStatus);
    delay(1000);
  }else{
    ;
  }
}
//
int tiltSw(){
  //  チルトスイッチの読み取りを安定させるため、100回連続して同じ値が返るまで読む。
  int i = 0, prevStatus = LOW, nowStatus = LOW;
  prevStatus = digitalRead(TILTSW);
  do{
    nowStatus = digitalRead(TILTSW);
    if(nowStatus == prevStatus){
      i ++;
    }else{
      i = 0;
    }
    prevStatus = nowStatus;
  }while(i < 100);
  return(nowStatus);
}
//
void tweetMsg(int tiltStatus){
  char
    openMsg[] = "%e3%82%84%e3%81%82%e3%80%82%e4%bf%ba%e3%81%af%e4%bd%90%e8%97%a4%e5%ae%85%e3%81%ae%e4%be%bf%e5%99%a8%e3%81%a0%e3%80%82%e4%bb%8a%e3%83%95%e3%82%bf%e3%81%8c%e9%96%8b%e3%81%84%e3%81%a6%e3%81%84%e3%82%8b%e3%80%82",
    //  "やあ。俺は佐藤宅の便器だ。今フタが開いている。"
    closeMsg[] = "%e4%bf%ba%e3%81%af%e4%bd%90%e8%97%a4%e5%ae%85%e3%81%ae%e4%be%bf%e5%99%a8%e3%81%a0%e3%80%82%e4%bb%8a%e3%83%95%e3%82%bf%e3%81%8c%e9%96%89%e3%81%be%e3%81%a3%e3%81%9f%e3%80%82",
    //  "俺は佐藤宅の便器だ。今フタが閉まった。"
    tempMsg1[] = "%e4%be%bf%e6%89%80%e3%81%ae%e6%b0%97%e6%b8%a9%e3%81%af",
    //  "便所の気温は"
    tempMsg2[] = "%e2%84%83%e3%81%a0%e3%80%82";
    //  "℃だ。"
  char tweetStr[512], *openCloseMsg = "", tempStr[16];
  if(tiltStatus == HIGH){
    openCloseMsg = openMsg;
  }else{
    openCloseMsg = closeMsg;
  }
  dtostrf(tempMesure(), 5, 2, tempStr);
  sprintf(tweetStr, "%s  \r\n %s %s %s\r\n%ld", openCloseMsg, tempMsg1, tempStr, tempMsg2, millis());
  //  Twitterは同じ文字列を繰り返し書き続けられないので、起動時間を付けて書き、重複を防ぐ。
  TWITTER.post(tweetStr);
  TWITTER.wait();
}
//
float tempMesure(){
  const float B = 4350.0, Ta = 25.0, Rt0 = 50000.0;  //  MF11-503Kスペックシート記載
  const float K = 273.15;  //  熱力学温度の定数
  const float v0 = 5.0, r0 = 1000.0;  //  Arduino +5Vと電流調整抵抗1kΩ
  const int resolution = 1024;  //  アナログ入力の分解能
  int srcVal = 0;
  float vt = 0.0, rt = 0.0;
  
  srcVal = analogRead(THERMISTOR);
  vt = srcVal * (v0 / (resolution - 1));
  rt = (v0 * r0 - vt * r0) / vt;
  return(1.0 / (log(rt / Rt0) / B + 1.0 / (Ta + K)) - K);
}

耽るLチカ

投稿日:

 LEDは半導体であるから、電球と違って、光り始める前は抵抗は無限大であり、電流は流れない。ところが電圧がVfを超えて光り始めたら最後、抵抗がなくなって電源をショートさせた状態でぶっ飛び、自分自身も壊れる。従って必ず抵抗を一緒にくっつけてやるのだ。

 その抵抗を選ぶのは簡単で、基本的に E = I\cdot R という、この式のみでよい。LEDを買ってくると、流すべき電流値(If)、光り始める電圧(Vf)がどこかに書いてあるから、それに従って計算する。すなわち、

R = \frac{V - Vf}{If}

ここに、

V 自分が用意する電源の電圧
Vf 買ってきたLEDのVf(順方向電圧)、つまり光り始める電圧
If 買ってきたLEDのIf(順方向電流)、つまり光らせるために必要な電流

 ただ、抵抗は入手可能な数値が決まっており、そのものピタリという抵抗値のものは売っていない。なので、計算した値と一番近い抵抗を選び、その抵抗値で再び電流を計算して、買ってきたLEDのIfを超えていないかどうかを確かめる。

 これが、簡単な計算ではあるけどいちいち面倒くさい。

 それでまあ、抵抗を選ぶのにこういうスプレッドシートを作る。

 それから、これを使ってみよう。

IMG_3181

 これは、「武蔵野電波のプロトタイパーズ第15回『TLC5940で16個のLEDを遊ぶ』」で取り上げられている「TLC5940NT」というICだ。千石電商本店2階、入って左側の、一番奥のほうの抽斗で売られている。武蔵野電波のページでは400~700円とされているが、千石電商の店頭売りでは390円である。

 Arduinoで使うには、GitHubにあるライブラリをダウンロードし、zipを展開して出てくる「tlc5940」というディレクトリをArduino IDEのインストールディレクトリの下にある「libraries」の中にコピーすればよい。

 スペックシートはコレだが、スペックシートを見るより、Arduinoにライブラリを入れると出てくるようになるサンプルスケッチの「BasicUse」を見た方が分かり易いと思う。こんな風にサンプルは書かれている。

/*
    Basic Pin setup:
    ------------                                  ---u----
    ARDUINO   13|-> SCLK (pin 25)           OUT1 |1     28| OUT channel 0
              12|                           OUT2 |2     27|-> GND (VPRG)
              11|-> SIN (pin 26)            OUT3 |3     26|-> SIN (pin 11)
              10|-> BLANK (pin 23)          OUT4 |4     25|-> SCLK (pin 13)
               9|-> XLAT (pin 24)             .  |5     24|-> XLAT (pin 9)
               8|                             .  |6     23|-> BLANK (pin 10)
               7|                             .  |7     22|-> GND
               6|                             .  |8     21|-> VCC (+5V)
               5|                             .  |9     20|-> 2K Resistor -> GND
               4|                             .  |10    19|-> +5V (DCPRG)
               3|-> GSCLK (pin 18)            .  |11    18|-> GSCLK (pin 3)
               2|                             .  |12    17|-> SOUT
               1|                             .  |13    16|-> XERR
               0|                           OUT14|14    15| OUT channel 15
    ------------                                  --------

    -  Put the longer leg (anode) of the LEDs in the +5V and the shorter leg
         (cathode) in OUT(0-15).
    -  +5V from Arduino -> TLC pin 21 and 19     (VCC and DCPRG)
    -  GND from Arduino -> TLC pin 22 and 27     (GND and VPRG)
    -  digital 3        -> TLC pin 18            (GSCLK)
    -  digital 9        -> TLC pin 24            (XLAT)
    -  digital 10       -> TLC pin 23            (BLANK)
    -  digital 11       -> TLC pin 26            (SIN)
    -  digital 13       -> TLC pin 25            (SCLK)
    -  The 2K resistor between TLC pin 20 and GND will let ~20mA through each
       LED.  To be precise, it's I = 39.06 / R (in ohms).  This doesn't depend
       on the LED driving voltage.
    - (Optional): put a pull-up resistor (~10k) between +5V and BLANK so that
                  all the LEDs will turn off when the Arduino is reset.

    If you are daisy-chaining more than one TLC, connect the SOUT of the first
    TLC to the SIN of the next.  All the other pins should just be connected
    together:
        BLANK on Arduino -> BLANK of TLC1 -> BLANK of TLC2 -> ...
        XLAT on Arduino  -> XLAT of TLC1  -> XLAT of TLC2  -> ...
    The one exception is that each TLC needs it's own resistor between pin 20
    and GND.

    This library uses the PWM output ability of digital pins 3, 9, 10, and 11.
    Do not use analogWrite(...) on these pins.

    This sketch does the Knight Rider strobe across a line of LEDs.

    Alex Leone <acleone ~AT~ gmail.com>, 2009-02-03 */

#include "Tlc5940.h"

void setup()
{
  /* Call Tlc.init() to setup the tlc.
     You can optionally pass an initial PWM value (0 - 4095) for all channels.*/
  Tlc.init();
}

/* This loop will create a Knight Rider-like effect if you have LEDs plugged
   into all the TLC outputs.  NUM_TLCS is defined in "tlc_config.h" in the
   library folder.  After editing tlc_config.h for your setup, delete the
   Tlc5940.o file to save the changes. */

void loop()
{
  int direction = 1;
  for (int channel = 0; channel < NUM_TLCS * 16; channel += direction) {

    /* Tlc.clear() sets all the grayscale values to zero, but does not send
       them to the TLCs.  To actually send the data, call Tlc.update() */
    Tlc.clear();

    /* Tlc.set(channel (0-15), value (0-4095)) sets the grayscale value for
       one channel (15 is OUT15 on the first TLC, if multiple TLCs are daisy-
       chained, then channel = 16 would be OUT0 of the second TLC, etc.).

       value goes from off (0) to always on (4095).

       Like Tlc.clear(), this function only sets up the data, Tlc.update()
       will send the data. */
    if (channel == 0) {
      direction = 1;
    } else {
      Tlc.set(channel - 1, 1000);
    }
    Tlc.set(channel, 4095);
    if (channel != NUM_TLCS * 16 - 1) {
      Tlc.set(channel + 1, 1000);
    } else {
      direction = -1;
    }

    /* Tlc.update() sends the data to the TLCs.  This is when the LEDs will
       actually change. */
    Tlc.update();

    delay(75);
  }

}

 この最初のほうのコメントにアスキー・アートで書かれている図を見て結線するとよい。こんな感じだ。

IMG_3185

 LEDは秋葉原・千石電商の隣の店、「akiba LEDピカリ館」で売っていた10個入り300円の白色LEDで、Vfが3.0V~3.4V、Ifが20mAとある。電源が5Vならば100Ωばかり抵抗を付けてやればいい理屈だが、全部点灯させるとArduinoがダメになってしまうから、さらに絞って10KΩつけてやる。

 コンパイルして動かすとこうなる。

 10kΩでもこれくらい明るい。

 このICを使うと、パルス幅変調の幅も、Arduinoが256段階であるのに比べ、4096段階と格段に細かくなる。

 アレンジを加えてみよう。昨日買ってきたポテンショメータを使う。アナログの4番ピンと5番ピンに50kΩのポテンショメータと10kΩの抵抗をつなぎ、それぞれを強さと速さにして、「尾を引いたみたいに」明るさ制御をする。

 ポテンショメータの回路はこうする。

IMG_3191

 図の「E1」をアナログ入力で読めばよい。ポテンショメータのつまみの位置は、次の計算でR2を求めれば明らかになる。

E_{0} = I_{0}\cdot(R_{1} + R_{2})
I_{0} = \frac{E_{0}}{R_{1} + R_{2}}…①
I_{0} = \frac{E_{1}}{R_{2}}…②
① = ②
\frac{E_{0}}{R_{1} + R_{2}} = \frac{E_{1}}{R_{2}}
E_{0}\cdot R_{2} = E_{1}\cdot R_{1} + E_{1}\cdot R_{2}
R_{2}(E_{0} - E_{1}) = E_{1}\cdot R_{1}
R_{2} = \frac{E_{1}\cdot R_{1}}{E_{0}-E_{1}}

 組み付けるとこうなる。

IMG_3187

 動かすとこんな感じ。

 スケッチはこんな感じ。

//
//  wPotentio2tlc5940.ino
//    ポテンショメータとTLC5940でLチカ
//    27.08.02(日)0900~
//    佐藤俊夫
//
#include "Tlc5940.h"
//
const float
  R1 = 10000.0,     //  ポテンショメータ前の抵抗10kΩ, 
  E0 = 5.0,         //  電源電圧5V, 
  MAXVR = 50000.0;  //  ポテンショメータの最大抵抗
const unsigned int   VR1 = 4, VR2 = 5;  //  ポテンショメータはアナログピンのA4・A5
const unsigned int MAX_LED = 15;  //  LEDは0~15の16個
//
void setup()
{
  Tlc.init();
  pinMode(VR1, INPUT);
  pinMode(VR2, INPUT);
}

void loop()
{
  float vr1 = 0.0, vr2 = 0.0, e11 = 0.0, e21 = 0.0;
  static unsigned int topLed = 0, tailLen = 10;
  e11 = analogRead(VR1) * (5.0 / 1024);
  e21 = analogRead(VR2) * (5.0 / 1024);
  vr1 = (e11 * R1) / (E0 - e11);  //  明るさ
  vr2 = (e21 * R1) / (E0 - e21);  //  速さ
  if(++topLed > MAX_LED + tailLen)  topLed = 0;
  Tlc.clear();
  int bright = constrain(fmap(vr1, 0.0, MAXVR, 0, 4095), 0, 4095);
  Tlc.set(topLed, bright);
  for(int i = topLed - 1; i >= 0; i--){
    bright -= (4096 / tailLen);
    if(bright < 0) bright = 0;
    Tlc.set(i, bright);
  }
  Tlc.update();
  unsigned int delayTime = constrain(fmap(vr2, 0.0, MAXVR, 100, 10), 10, 100);
  delay(delayTime);
}
//
float fmap(float x, float in_min, float in_max, float out_min, float out_max) {
  //  もともとの「map()」がlong int型でこの用途に合わないので、float型を定義
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

晩夏漫歩

投稿日:

 千石電商と秋月電子で買い物しようと思い、秋葉原へ行った。

 秋葉原UDX下の立体橋のあたりで、向こうから歩いてきた黒ビジネススーツ、まとめ髪にタイトスカートのOLがにわかにこっちへ走り出してきた。

 驚いて成り行きを見守っていると、私の横を並んで歩いていた「サラリーマンの普段着風」の男にはっしと抱きつき、「ありがとうー!」と言っている。多分恋人なのだろう。

「来てくれてありがとうー!」

 OLさん、人目も憚らず、本当に嬉しそうだ。残りは見も聞きもしなかったが、男も嬉しそうだった。

 ちょっと前ならこんな行動はチャラチャラした連中しかしなかったもので、今日のようないずれ劣らぬ大人の男女は街路で抱擁するなど考えられなかったものだ。

 文句を言っているのではない。逆だ。日本は平和で自由で、本当にほがらかで楽しい国になったと思うのみである。良いことだ。

 さておき、今日秋葉原をうろつくのは、LEDで遊びたいからである。それは、私淑するスタパ齋藤大先生が参加運営しておられる「武蔵野電波」で、Arduinoを使用してLEDをチカチカと光らせまくっているのに多大なる影響を受け、そのマネをするためである。

 そもそも、従来スタパ齋藤大先生のマネをするのは極めて困難であった。なんとなれば、デジタルものは、私にとっては高価だからである。スタパ齋藤大先生は数千万円を気絶のうちにつぎ込んでデジタル道を邁進している人なのであって、その求道の姿は到底私ごときにマネできるものではない。

 だが、スタパ齋藤大先生のインタレストが電子工作に指向しだしてからは別だ。炭素抵抗を1個買ったところで5円、ICを1個買っても300円とか、「お前は小学生かい!」と言われかねないほどのあさましい額の微々たる支出である。マネをすることは容易だ。

 今日はさまざまな色のLEDと、武蔵野電波のサイトで紹介されていたLEDドライブIC、テキサス・インスツルメンツの「TLC5940NT」、電圧発生用の抵抗、工具などを買う。いろいろ買っても1500円とかそんな程度の出費だ。ほんと、花火大会見物に行く小学生に渡す小遣い程度のものである。

 秋葉原のメイド通りで冷やし中華の看板が出ていたので食っていく。

 ヨドバシで珍しくカメラ売り場へ行き、買い物をした。

 上野へ寄って、アメ横で鍔広の中折を求める。夏向きの、麻風の黒いもの。

 こんなものを買った。

IMG_3164

 私には写真の趣味はないので知らなかったのだが、小さいモノの撮影をするにはこういうものを使うべきなのだそうである。これは小さい写真撮影ブースで、1700円ほどのものだ。傘のような仕組みになっており、テントのような形になる。

IMG_3165

 この中にモノを置いて撮るのである。

 で、さっそく今日買ってきたものなどを撮る。

IMG_3167

 なんだかガラクタをたくさん買ってきているが、まあ、2000円くらいのものである。

 今日の大ヒット買い物は、やはりこれだろう。

IMG_3171

 これも武蔵野電波で紹介されていたもので、ブレッドボード用のジャンプワイヤを加工するためのゲージだ。普段使っているワイヤーストリッパにネジで取り付けて使う。次のような感じだ。

IMG_3173

 他に、3端子レギュレータなど買い込む。

IMG_3174

 東芝のTA7805S。50円くらいのもの。なんでこれを買うかと言うと、ArduinoでLチカをやる際、Arduinoはできれば9Vを給電した方が良いが、LEDに9Vをかけると多少無理が大きいので、LEDには別建てで5Vをかけるためである。これで出力側にセラミックコンデンサを付けて平滑化しておけば手軽に5Vに落とせるのだ。

 次女が小学生の頃使っていた髪留めを徴発し、これに3ミリのドリルで穴をあけ、LEDを埋め込んで、この3端子レギュレータで光らせてみる。なかなかピカピカしてよい。

IMG_3177

ただのLチカがこれまた

投稿日:

 釣りは「へら鮒に始まりへら鮒に終わる」と言うそうだが、「ArduinoはLチカに始まりLチカに終わる」などと誰かが言っていそうで多分誰も言っていない(笑)。

 さておき、けっこう楽しいんだよな、Lチカ。

 で、なんっか、手持ちのものをいろいろとくっつけたくなるのだ。今日目に入ったのはSeeedstudio SIDEKICK BASIC KITに入っていた青いポテンショメータ。私が少年の頃は「バリオーム」「ボリューム」「可変抵抗」と言ったものだが、今はポテンショメータと言うそうな。

 ポテンショメータでLチカのスピードを調整してみよう。

 まず、ポテンショメータのスペックシートなどがなくてはっきりしないから、テスターを当てて抵抗を測る。0Ωから10.5kΩまで変化できることがわかった。

 このまま直列に+5Vを印加してアナログピンに入力してしまいそうだが、0Ωの時に過電流になってしまうから、10kΩの別の抵抗と直列に入れた方がいいだろう。そうするとポテンショメータを最小に回し切っても0.5mAくらいに抑えられる。

 計算はどうなるかというと、こんなようなことになる。

IMG_3161

 式に代入すれば、ポテンショメータを最大抵抗にしたとき2.44V、最小抵抗にしたとき0Vになることがわかる。

 プロトタイピングシールドのブレッドボードは小さくて全部の部品が載らないから、普段使っている普通のブレッドボードにつける。

IMG_3157

 動かすとこんな感じだ。

 スケッチはこんな感じ。

//
//  vr2speed.ino
//    ポテンショメータでLチカ制御
//    27.07.26(日)1300~
//    佐藤俊夫
//
const unsigned int
  STARTPIN  = 2,
  ENDPIN    = 8,
  INPUTPIN  = 9,
  VR        = 0,
  DELAYMIN  = 5,
  DELAYMAX  = 100;
const float
  V0 = 5.0,         //  +5V
  R1 = 10000.0,     //  アナログピンに入れるための電流制限抵抗10kΩ
  VRMIN = 0.0,      //  ポテンショメータの最小抵抗実測値 0Ω
  VRMAX = 10500.0;  //  ポテンショメータの最大抵抗実測値 10.5kΩ
//
void setup() {
  //  330Ωをカソードにそれぞれ入れてデジタル2~8番にLEDを繋いである。
  for(int i = STARTPIN; i <= ENDPIN; i++){
    pinMode(i, OUTPUT);
  }
  //  タクトスイッチは9番に繋いでアースし、内蔵プルアップ抵抗を使っている。
  pinMode(INPUTPIN, INPUT_PULLUP);
  //  ポテンショメータは10kΩ抵抗と直列に繋ぎ、間から出力を取っている。
  pinMode(VR, INPUT);
}

void loop() {
  static int i = STARTPIN, RLdirection = 1, delaytime = DELAYMIN;
  static unsigned long int prevtime = 0;
  if(prevtime + delaytime < millis()){
    digitalWrite(i, LOW);
    i += RLdirection;
    if(i > ENDPIN) i = STARTPIN;
    if(i < STARTPIN) i = ENDPIN;
    digitalWrite(i, HIGH);
    prevtime = millis();
  }
  if(digitalRead(INPUTPIN) == LOW){
    delay(500);
    RLdirection *= -1;
  }
  float v1 = (V0 * R1) / (R1 + VRMAX);
  float vr = analogRead(VR) * (V0 / 1024);
  delaytime = constrain(fmap(vr, v1, 0.0, DELAYMAX, DELAYMIN), DELAYMIN, DELAYMAX);
}

float fmap(float x, float in_min, float in_max, float out_min, float out_max) {
  //  もともとの「map()」がlong int型でこの用途に合わないので、float型を定義
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}




空の写真リベンジ

投稿日:

 先週試したAdafruit製の「小型TTLシリアルjpegカメラ」での間欠撮影先週はどうしたわけか同じ画像ばかり撮れてしまい、失敗である。

 (チナミに、このカメラのメーカーの「Adafruit」という会社、有名なマッシモ・バンジのTEDの中で紹介されていたことに気付いた。)

https://youtube.com/watch?v=UoBUXOOdLXY%3Ft%3D5m50s

 気を取り直して、スケッチを直す。撮影時のカメラのステータスを確認し、撮れていなければ何回でも撮り続ける。

「while(撮れてない)撮る;」

……というわけだ。まあ、万が一ハードウェアエラーなどがあるとループが回り続けるので良くないが、ループが回り続けようが結局のところはモノとしては電源を入れ直す他にどうしようもないので、こんなものだろう。

 それと、撮影が終わったらカメラをそのつどリセットすることにした。また、既に存在するファイル名は避けるようにした。こういう時、Arduinoには書式文字列付きの「sprintf」がないので、少し不便だなと思う。

 夜明けから日没までの一日の空の雲を撮りたいので、天気予報を見て雨が降らぬ確信を持ってから、昨夜寝る前にベランダにカメラをセットしておいた。朝早く起きるより楽だからだ。夜のうちに1000枚くらい写真が撮れてしまうが、SDカードには余裕があるので大丈夫である。

 昼間は用事があるのでカメラの面倒は見れないが、放置しておけば淡々と写真は撮れていく。

IMG_3143

 で、撮れた写真をWindows Movie Makerに流し込むと、微速撮影動画の一丁上がりだ。

 スケッチは次のとおりである。

//
//  camera2Web.ino
//    27.07.20(月) 0850~
//    佐藤俊夫
//    Adafruit製小型TTLシリアルJPEGカメラ+ETHERNET SHIELD 2で
//    間欠撮影をし、Webでダウンロードできるようにする。
//
#include <Adafruit_VC0706.h>
#include <SPI.h>
#include <SD.h>
#include <SoftwareSerial.h>
#include <Ethernet2.h>

#define CHIPSELECT 4

SoftwareSerial CAMCONNECTION(2, 3);
Adafruit_VC0706 CAM = Adafruit_VC0706(&CAMCONNECTION);
const unsigned long int INTERVAL = 30L * 1000L;
byte MAC[] = {  0x90, 0xA2, 0xDA, 0x0F, 0xF6, 0x74 };
IPAddress IP(192, 168, 1, 129);
EthernetServer SERVER(80);
EthernetClient CLIENT;

void setup() {
  pinMode(10, OUTPUT);
  if(!SD.begin(CHIPSELECT)) return;
  if(!CAM.begin()) return;
  CAM.setImageSize(VC0706_320x240);
  Ethernet.begin(MAC, IP);
  SERVER.begin();
  delay(1000);
}

void loop() {
  static unsigned long int prevtime = 0;
  char c;
  String rstr = "";
  //  INTERVALおきに写真を撮る
  if(millis() >= prevtime + INTERVAL){
    prevtime = millis();
    takePicture();
  }
  //  Webサーバ
  CLIENT = SERVER.available();
  if(CLIENT) {
    while(CLIENT.connected()) {
      if(CLIENT.available()) {
        c = CLIENT.read();
        rstr += c;
        if(rstr.endsWith("\r\n")){
          break;
        }
      }
    }
    if(rstr.indexOf("IMG") >= 0){
      String filename = "DCIM/";
      char cfilename[17];
      filename.concat(rstr.substring(rstr.indexOf("IMG"), rstr.indexOf("JPG") + 3));
      filename.toCharArray(cfilename, 17);
      CLIENT.println("HTTP/1.1 200 OK");
      CLIENT.println("Content-Type: image/jpg");
      CLIENT.println("Connection: close");
      CLIENT.println();
      File img = SD.open(cfilename);
      while(img.available()){
        CLIENT.write(img.read());
      }
      img.close();
    }else{
      sendform();
    }
    rstr = "";
    delay(1);
    // close the connection:
    CLIENT.stop();
  }
  delay(20);
}

void sendform(){
  //  フォームを送る。
  CLIENT.println("HTTP/1.1 200 OK");
  CLIENT.println("Content-Type: text/html");
  CLIENT.println("Connection: close");
  CLIENT.println();
  CLIENT.println("<!DOCTYPE HTML>");
  CLIENT.println("<html><head></head><body><center>");
  File dcim = SD.open("/DCIM");
  while(true) {
    File imgfile =  dcim.openNextFile();
    if(!imgfile){
      dcim.rewindDirectory();
      break;
    }
    CLIENT.write("<a href=\"");
    CLIENT.write(imgfile.name());
    CLIENT.write("\">");    
    CLIENT.write(imgfile.name());
    CLIENT.println("</a><br>");
    imgfile.close();    
  }
  dcim.close();
  CLIENT.println("</center></body></html>");
}

void takePicture(){
  static unsigned int pnum = 0;
  char filename[] = "DCIM/img0000.jpg";
  while(!CAM.takePicture());
  do{
    filename[8]  = '0' + pnum / 1000;
    filename[9]  = '0' + (pnum / 100) % 10;
    filename[10] = '0' + (pnum /  10) % 10;
    filename[11] = '0' + pnum % 10;
    pnum ++;
  }while(SD.exists(filename));
  if(pnum > 9999) pnum = 0;
  File imgFile = SD.open(filename, FILE_WRITE);
  uint16_t jpglen = CAM.frameLength();
  pinMode(8, OUTPUT);
  while (jpglen > 0) {
    uint8_t *buffer;
    uint8_t bytesToRead = min(32, jpglen);
    buffer = CAM.readPicture(bytesToRead);
    imgFile.write(buffer, bytesToRead);
    jpglen -= bytesToRead;
  }
  while(!CAM.reset());
  imgFile.close();
}




いよいよ多機能リモコン

投稿日:

 LEDを強力に光らせることが出来たので、いよいよWebサーバつき多機能リモコンを作成する。卓上などに置いておき、ネットワークにつないで、スマホなどから複数の電化製品を操作できるというものだ。

 ここでは、いくつかのテクニックを使った。

 一つは、フォームが大きくなってしまい、ハードコーディングするとメモリが足りなくなる。そこで、SDカード内にHTMLを置き、これを読み出すようにした。

 同様に、リモコンから読み取った数値データが大きくなって、普通にハードコーディングしたのではメモリが不足する。そこで、「PROGMEM」というキーワードを使って、フラッシュメモリ内にデータを置き、これを読み出すようにした。

IMG_3134 ETHERNET SHIELD 2を遺憾なく使う。SDカードを取り付けられるから、そこにHTMLを書き込んでおけばよい。FETをつけたブレッドボードと一緒に、買っておいたSparkfunの基盤に固定する。

 SDカード内には、次のようなHTMLを置き、ファイル名を「irform.htm」とする。

<html>
 <head>
  <meta name="Editor" content="Notepad.exe">
  <meta http-equiv="Content-Type" content="text/html;charset=Shift_JIS">
  <title>Webリモコン</title>
  <basefont size=4>
 </head>

 <body bgcolor="#ddffdd">
  <center>
   <h1><b>Webリモコン</b></h1>
     <table>
      <tr><td> 作成者   </td>
       <td align="right">佐藤俊夫</td></tr>
      <tr><td> 作成日時 </td>
       <td align="right">27.07.19 (日) 1835</td></tr>
     </table>
  </center>
  <hr>
  <center>
    <form method="get" name="irremote">
    <table border=1>
      <tr><th>機器</th><th>ボタン</th></tr>
      <tr>
        <td rowspan=4>扇風機</td>
        <td><input submit type="submit" value="入/風量" name="fan_on"></td>
      </tr>
        <tr><td><input submit type="submit" value="タイマー" name="fan_timer"></td></tr>
        <tr><td><input submit type="submit" value="首振" name="fan_swing"></td></tr>
        <tr><td><input submit type="submit" value="切" name="fan_off"></td></tr>
      </tr>
      <tr>
        <td rowspan=5>テレビ</td>
        <td><input submit type="submit" value="入/切" name="tv_on_off"></td>
      </tr>
        <tr><td><input submit type="submit" value="音量大" name="tv_volup"></td></tr>
        <tr><td><input submit type="submit" value="音量小" name="tv_voldown"></td></tr>
        <tr><td><input submit type="submit" value="チャンネル>" name="tv_chup"></td></tr>
        <tr><td><input submit type="submit" value="チャンネル<" name="tv_chdown"></td></tr>
    </table>
    </form>
  </center>
 </body>
</html>

irform 上のHTMLの見た目はこんな感じだ。

 スケッチは次のようになる。

//
//  Web2IRremote.ino
//    リモコンをウェブで操作する。
//    27.07.25(日) 1930
//    佐藤俊夫
//
#include <SPI.h>
#include <Ethernet2.h>
#include <SD.h>
#include <IRremote.h>
#include <avr/pgmspace.h>
//
byte mac[] = {  0x90, 0xA2, 0xDA, 0x0F, 0xF6, 0x74 };
IPAddress ip(192, 168, 1, 129);
EthernetServer SERVER(80);
EthernetClient CLIENT;
IRsend irsend;
PROGMEM
  const unsigned int
    fan_on[]     = {4500,2150, 600,500, 650,500, 600,500, 600,500, 600,1650, 600,1600, 650,1550, 650,500, 600,1600, 650,1600, 600,1600, 650,450, 600,1600, 650,500, 600,500, 650,500, 600,1600, 600,500, 650,500, 600,500, 600,500, 600,500, 600,1650, 600,500, 600,500, 600,500, 650,1600, 600,1600, 600,1650, 600,1600, 600,500, 650,500, 600,0},
    fan_timer[]  = {4500,2150, 550,550, 550,600, 550,550, 600,500, 550,1700, 500,1700, 550,1650, 550,600, 550,1650, 550,1700, 500,1700, 550,600, 500,1700, 550,550, 550,550, 550,600, 500,1700, 550,600, 500,600, 500,600, 500,600, 550,550, 550,1700, 550,600, 450,600, 550,550, 550,600, 500,1700, 550,1650, 550,1700, 550,1650, 550,600, 500,0},
    fan_swing[]  = {4450,2200, 600,550, 550,500, 600,550, 550,550, 550,1700, 550,1650, 550,1700, 550,550, 550,1650, 550,1700, 550,1650, 550,550, 600,1650, 550,550, 550,550, 550,550, 600,1650, 550,550, 550,550, 600,550, 550,550, 550,550, 600,1600, 600,550, 550,550, 550,1650, 600,1550, 650,1700, 550,1650, 550,550, 550,550, 600,550, 550,0},
    fan_off[]    = {4450,2250, 550,550, 600,550, 550,500, 600,550, 550,1650, 600,1650, 550,1650, 600,550, 550,1650, 550,1650, 600,1650, 550,550, 550,1700, 550,550, 550,550, 550,550, 550,1700, 550,550, 550,550, 550,550, 600,550, 550,550, 550,1650, 550,550, 600,550, 550,1650, 600,1650, 550,550, 550,1700, 550,500, 600,550, 550,1650, 600,0},
    tv_on_off[]  = {3400,1750, 400,500, 350,1350, 400,500, 350,500, 400,500, 350,500, 400,500, 350,450, 400,500, 400,500, 350,500, 400,500, 350,500, 350,1350, 400,500, 400,500, 350,450, 400,500, 400,500, 350,450, 400,500, 400,500, 350,500, 400,1300, 400,500, 400,450, 400,500, 400,500, 350,500, 350,500, 400,450, 400,450, 400,1350, 400,500, 400,1300, 400,1350, 400,1350, 400,1350, 400,450, 400,500, 400,1300, 400,500, 400,1300, 400,1350, 400,1350, 400,1350, 400,500, 350,1350, 400,0},
    tv_volup[]   = {3400,1750, 400,500, 400,1300, 400,500, 400,500, 350,500, 450,400, 400,500, 350,500, 400,500, 350,500, 350,500, 400,500, 350,500, 400,1300, 400,500, 400,450, 400,500, 350,500, 400,500, 350,500, 400,500, 350,500, 350,500, 400,1300, 450,450, 400,500, 350,500, 400,500, 350,500, 400,450, 400,500, 350,500, 400,500, 350,450, 400,500, 400,500, 350,500, 450,1250, 400,500, 400,500, 350,500, 400,450, 400,500, 350,500, 400,500, 350,1350, 400,450, 400,1350, 400,0},
    tv_voldown[] = {3400,1750, 400,500, 350,1350, 400,500, 400,450, 400,500, 350,500, 400,450, 400,500, 400,500, 350,500, 350,500, 400,500, 350,500, 350,1300, 450,500, 400,500, 350,450, 400,500, 450,450, 350,500, 400,450, 400,450, 400,500, 400,1300, 450,500, 350,500, 350,500, 400,500, 350,450, 400,500, 400,500, 350,500, 400,1300, 400,500, 400,450, 400,500, 400,500, 350,1350, 400,500, 350,500, 400,1300, 400,500, 400,500, 350,500, 350,500, 400,1300, 450,500, 350,1350, 400,0},
    tv_chup[]    = {3400,1750, 400,500, 400,1350, 450,400, 400,450, 400,500, 450,400, 400,450, 400,500, 450,450, 450,400, 450,450, 400,400, 400,500, 450,1250, 450,500, 350,450, 500,400, 450,400, 400,500, 350,500, 450,450, 350,500, 450,450, 450,1250, 400,500, 450,400, 400,500, 400,450, 450,400, 450,450, 350,500, 450,400, 450,450, 350,500, 450,1250, 400,500, 450,1250, 500,1250, 500,400, 450,450, 350,500, 450,450, 350,1350, 450,450, 400,1300, 450,1250, 500,450, 400,1250, 450,0},
    tv_chdown[]  = {3500,1650, 450,500, 400,1300, 400,500, 450,400, 350,500, 400,450, 500,400, 450,450, 350,450, 400,500, 400,500, 350,500, 400,450, 450,1300, 450,450, 350,450, 450,500, 350,500, 450,400, 450,400, 400,500, 350,500, 450,400, 400,1350, 450,400, 500,400, 450,450, 450,400, 400,500, 350,500, 350,500, 400,500, 350,1350, 450,450, 350,1350, 400,500, 350,1350, 500,1250, 450,450, 450,400, 450,1250, 500,400, 450,1300, 450,450, 400,1300, 450,1250, 450,500, 350,1350, 450,0};
////
void setup() 
{ 
  const int chipSelect = 4;
  Ethernet.begin(mac, ip);
  SERVER.begin();
  if (!SD.begin(chipSelect)) {
    return;
  }
} 
 
void loop() 
{ 
  //  Webサーバの動作
  char c;
  String rstr = "";
  CLIENT = SERVER.available();
  if (CLIENT) {
    while (CLIENT.connected()) {
      if (CLIENT.available()) {
        c = CLIENT.read();
        rstr += c;
        if(rstr.endsWith("\r\n")){
          break;
        }
      }
    }
    if(rstr.indexOf("fan_on=") >= 0){
      unsigned int buf[sizeof(fan_on) / sizeof(*fan_on)];
      for(int i = 0; i < sizeof(fan_on) / sizeof(*fan_on); i++){
        buf[i] = pgm_read_word(fan_on + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("fan_timer=") >= 0){
      unsigned int buf[sizeof(fan_timer) / sizeof(*fan_timer)];
      for(int i = 0; i < sizeof(fan_timer) / sizeof(*fan_timer); i++){
        buf[i] = pgm_read_word(fan_timer + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("fan_swing=") >= 0){
      unsigned int buf[sizeof(fan_swing) / sizeof(*fan_swing)];
      for(int i = 0; i < sizeof(fan_swing) / sizeof(*fan_swing); i++){
        buf[i] = pgm_read_word(fan_swing + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("fan_off=") >= 0){
     unsigned int buf[sizeof(fan_off) / sizeof(*fan_off)];
     for(int i = 0; i < sizeof(fan_off) / sizeof(*fan_off); i++){
        buf[i] = pgm_read_word(fan_off + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("tv_on_off=") >= 0){
     unsigned int buf[sizeof(tv_on_off) / sizeof(*tv_on_off)];
     for(int i = 0; i < sizeof(tv_on_off) / sizeof(*tv_on_off); i++){
        buf[i] = pgm_read_word(tv_on_off + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("tv_volup=") >= 0){
     unsigned int buf[sizeof(tv_volup) / sizeof(*tv_volup)];
     for(int i = 0; i < sizeof(tv_volup) / sizeof(*tv_volup); i++){
        buf[i] = pgm_read_word(tv_volup + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("tv_voldown=") >= 0){
     unsigned int buf[sizeof(tv_voldown) / sizeof(*tv_voldown)];
     for(int i = 0; i < sizeof(tv_voldown) / sizeof(*tv_voldown); i++){
        buf[i] = pgm_read_word(tv_voldown + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("tv_chup=") >= 0){
     unsigned int buf[sizeof(tv_chup) / sizeof(*tv_chup)];
     for(int i = 0; i < sizeof(tv_chup) / sizeof(*tv_chup); i++){
        buf[i] = pgm_read_word(tv_chup + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    else if(rstr.indexOf("tv_chdown=") >= 0){
     unsigned int buf[sizeof(tv_chdown) / sizeof(*tv_chdown)];
     for(int i = 0; i < sizeof(tv_chdown) / sizeof(*tv_chdown); i++){
        buf[i] = pgm_read_word(tv_chdown + i);
      }
      irsend.sendRaw(buf, sizeof(buf) / sizeof(buf[0]), 38);
    }
    rstr = "";
    sendform();
    delay(1);
    // close the connection:
    CLIENT.stop();
  }
  delay(20);
}
void sendform(){
  //  フォームを送る。
  CLIENT.println("HTTP/1.1 200 OK");
  CLIENT.println("Content-Type: text/html");
  CLIENT.println("Connection: close");
  CLIENT.println();
  CLIENT.println("<!DOCTYPE HTML>");
  File html = SD.open("irform.htm");
  if (html) {
    while (html.available()) {
      CLIENT.write(html.read());
    }
    html.close();
  } 
}

IMG_3135 勿論、ただのWebであるから、このようにスマホの他、タブレットなどからも操作可能である。また、ルータでポートフォワードすれば、外出先からの操作も可能である。

赤外線LEDをもっとビカビカ光らせる

投稿日:

 さて、前回のこのエントリでは、赤外線LEDでリモコンを作る基礎が整ったが、50mA定格のLEDに5mAしか流していないので、いまいち光り方に根性がなく、電気製品の受光部にかなり近づけないと厳しい。

 そこで、どっぷり50mA近くまで電流を流し、赤外線LEDをして「ご主人様もうお腹いっぱいゲフォア」と言わしめたい。

 運よく、以前にソレノイドを動かした時のFET「2SK2232」がある。

 50mA近く流すには

R=\cfrac{5V}{50mA}=100\Omega

……ということで、100Ωかましてやればいいが、ちょうど100Ωの抵抗は持っていない。で、330Ωがあるから、これを3本並列にして

\cfrac{1}{\cfrac{1}{330\Omega}\times 3}=110\Omega

 110Ωに5V流せば

\cfrac{5V}{110\Omega}\fallingdotseq 45mA

……というわけで、じゃぶじゃぶ流せる。2SK2232のドレイン電流は25Aなので、余裕でオッケーである。

IMG_3133 と、いうわけで、回路図とブレッドボードはこうなる。

 スケッチは前回と同じでいい。

 動かしてデジカメのモニタで観察すると、もう、ビカビカにLEDが光る光るッ!。そんなに受光部に近づけなくても、ばりばり扇風機のスイッチがオンオフできるようになった。

カメラで遊んでみる

投稿日:

 秋月電子のサイトを見ていると、小さなカメラがあり、Arduinoに付きそうな感じだ。

 3850円。Arduino自体が2800円かそこらなので、それに比べるとちょっと高いが、早速行って購入。

 だが、あまり情報は多くない。まず、メーカーのサイトを見ていくと、チュートリアルがあり、「とりあえずテストするには、電源をくれてやって、一番端のピンをテレビにつなぎゃあ絵が出る」みたいなザックリ感満載の解説が。それで、テレビにつなぐためのRCAジャックなども買う。

 チュートリアルはこれを読んでおけばだいたいいいようだ。

 ほどいてみるとこんな感じで、かなり小さい。

IMG_3112

 ピンのピッチが2mmで、ブレッドボードで扱いにくい。それで、普通の2.54mmのピンヘッダを出して、その根元をこんなふうにムリヤリ(笑)2mmピッチにせばめる。

IMG_3116

 こいつをカメラの基盤にえいやっ、とねじ込み、半田付けする。

IMG_3118

 なかなか小さいので、ルーペと老眼鏡を併用しつつ、ICなんか壊しちゃってもナンだから、20Wのぬるくて細い半田鏝でさっさとつける。

IMG_3117

 我ながらなかなかスピーディな仕事だなあ(笑)。

 で、メーカーのサイトには「5V」と書いてあるが、これは互換品の別の製品のためのチュートリアルのようで、買ってきたものの基盤をよく見ると「3.3V」と印刷されている。壊してはもったいないから、3.3Vで試す。3.3Vの電源代わりにArduinoの3.3Vピンを使う。

 基盤の印刷通り、3.3V、GND、それから右端のピンをRCAジャックのセンターに、RCAジャックのアースを同じくGNDに入れて、テレビの前に持っていく。

IMG_3119

 テレビにつなぐと、おお、確かに、値段なりのフザけた画質(笑)で、自分の顔が映る。

IMG_3121

 上下が逆だが、まあ、いいや。

 で、今度はArduinoで画像を撮影してみよう。

 チュートリアルにしたがってArduino用のライブラリをダウンロードし、これをArduinoのインストールフォルダの「libraries」に配置する。

 そうしておいてArduinoのIDEを起動すると、「ファイル」→「スケッチの例」の中に「Adafruit VC0706 Serial Camera Library」が現れるから、この中から「Snapshot」を選ぶ。これは静止画をjpegで撮影するスケッチのサンプルだ。

// This is a basic snapshot sketch using the VC0706 library.
// On start, the Arduino will find the camera and SD card and
// then snap a photo, saving it to the SD card.
// Public domain.

// If using an Arduino Mega (1280, 2560 or ADK) in conjunction
// with an SD card shield designed for conventional Arduinos
// (Uno, etc.), it's necessary to edit the library file:
//   libraries/SD/utility/Sd2Card.h
// Look for this line:
//   #define MEGA_SOFT_SPI 0
// change to:
//   #define MEGA_SOFT_SPI 1
// This is NOT required if using an SD card breakout interfaced
// directly to the SPI bus of the Mega (pins 50-53), or if using
// a non-Mega, Uno-style board.

#include <Adafruit_VC0706.h>
#include <SPI.h>
#include <SD.h>

// comment out this line if using Arduino V23 or earlier
#include <SoftwareSerial.h>         

// uncomment this line if using Arduino V23 or earlier
// #include <NewSoftSerial.h>       

// SD card chip select line varies among boards/shields:
// Adafruit SD shields and modules: pin 10
// Arduino Ethernet shield: pin 4
// Sparkfun SD shield: pin 8
// Arduino Mega w/hardware SPI: pin 53
// Teensy 2.0: pin 0
// Teensy++ 2.0: pin 20
#define chipSelect 10

// Pins for camera connection are configurable.
// With the Arduino Uno, etc., most pins can be used, except for
// those already in use for the SD card (10 through 13 plus
// chipSelect, if other than pin 10).
// With the Arduino Mega, the choices are a bit more involved:
// 1) You can still use SoftwareSerial and connect the camera to
//    a variety of pins...BUT the selection is limited.  The TX
//    pin from the camera (RX on the Arduino, and the first
//    argument to SoftwareSerial()) MUST be one of: 62, 63, 64,
//    65, 66, 67, 68, or 69.  If MEGA_SOFT_SPI is set (and using
//    a conventional Arduino SD shield), pins 50, 51, 52 and 53
//    are also available.  The RX pin from the camera (TX on
//    Arduino, second argument to SoftwareSerial()) can be any
//    pin, again excepting those used by the SD card.
// 2) You can use any of the additional three hardware UARTs on
//    the Mega board (labeled as RX1/TX1, RX2/TX2, RX3,TX3),
//    but must specifically use the two pins defined by that
//    UART; they are not configurable.  In this case, pass the
//    desired Serial object (rather than a SoftwareSerial
//    object) to the VC0706 constructor.

// Using SoftwareSerial (Arduino 1.0+) or NewSoftSerial (Arduino 0023 & prior):
#if ARDUINO >= 100
// On Uno: camera TX connected to pin 2, camera RX to pin 3:
SoftwareSerial cameraconnection = SoftwareSerial(2, 3);
// On Mega: camera TX connected to pin 69 (A15), camera RX to pin 3:
//SoftwareSerial cameraconnection = SoftwareSerial(69, 3);
#else
NewSoftSerial cameraconnection = NewSoftSerial(2, 3);
#endif

Adafruit_VC0706 cam = Adafruit_VC0706(&cameraconnection);

// Using hardware serial on Mega: camera TX conn. to RX1,
// camera RX to TX1, no SoftwareSerial object is required:
//Adafruit_VC0706 cam = Adafruit_VC0706(&Serial1);

void setup() {

  // When using hardware SPI, the SS pin MUST be set to an
  // output (even if not connected or used).  If left as a
  // floating input w/SPI on, this can cause lockuppage.
#if !defined(SOFTWARE_SPI)
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
  if(chipSelect != 53) pinMode(53, OUTPUT); // SS on Mega
#else
  if(chipSelect != 10) pinMode(10, OUTPUT); // SS on Uno, etc.
#endif
#endif

  Serial.begin(9600);
  Serial.println("VC0706 Camera snapshot test");
  
  // see if the card is present and can be initialized:
  if (!SD.begin(chipSelect)) {
    Serial.println("Card failed, or not present");
    // don't do anything more:
    return;
  }  
  
  // Try to locate the camera
  if (cam.begin()) {
    Serial.println("Camera Found:");
  } else {
    Serial.println("No camera found?");
    return;
  }
  // Print out the camera version information (optional)
  char *reply = cam.getVersion();
  if (reply == 0) {
    Serial.print("Failed to get version");
  } else {
    Serial.println("-----------------");
    Serial.print(reply);
    Serial.println("-----------------");
  }

  // Set the picture size - you can choose one of 640x480, 320x240 or 160x120 
  // Remember that bigger pictures take longer to transmit!
  
  cam.setImageSize(VC0706_640x480);        // biggest
  //cam.setImageSize(VC0706_320x240);        // medium
  //cam.setImageSize(VC0706_160x120);          // small

  // You can read the size back from the camera (optional, but maybe useful?)
  uint8_t imgsize = cam.getImageSize();
  Serial.print("Image size: ");
  if (imgsize == VC0706_640x480) Serial.println("640x480");
  if (imgsize == VC0706_320x240) Serial.println("320x240");
  if (imgsize == VC0706_160x120) Serial.println("160x120");

  Serial.println("Snap in 3 secs...");
  delay(3000);

  if (! cam.takePicture()) 
    Serial.println("Failed to snap!");
  else 
    Serial.println("Picture taken!");
  
  // Create an image with the name IMAGExx.JPG
  char filename[13];
  strcpy(filename, "IMAGE00.JPG");
  for (int i = 0; i < 100; i++) {
    filename[5] = '0' + i/10;
    filename[6] = '0' + i%10;
    // create if does not exist, do not open existing, write, sync after write
    if (! SD.exists(filename)) {
      break;
    }
  }
  
  // Open the file for writing
  File imgFile = SD.open(filename, FILE_WRITE);

  // Get the size of the image (frame) taken  
  uint16_t jpglen = cam.frameLength();
  Serial.print("Storing ");
  Serial.print(jpglen, DEC);
  Serial.print(" byte image.");

  int32_t time = millis();
  pinMode(8, OUTPUT);
  // Read all the data up to # bytes!
  byte wCount = 0; // For counting # of writes
  while (jpglen > 0) {
    // read 32 bytes at a time;
    uint8_t *buffer;
    uint8_t bytesToRead = min(32, jpglen); // change 32 to 64 for a speedup but may not work with all setups!
    buffer = cam.readPicture(bytesToRead);
    imgFile.write(buffer, bytesToRead);
    if(++wCount >= 64) { // Every 2K, give a little feedback so it doesn't appear locked up
      Serial.print('.');
      wCount = 0;
    }
    //Serial.print("Read ");  Serial.print(bytesToRead, DEC); Serial.println(" bytes");
    jpglen -= bytesToRead;
  }
  imgFile.close();

  time = millis() - time;
  Serial.println("done!");
  Serial.print(time); Serial.println(" ms elapsed");
}

void loop() {
}

 で、これはSDカードに書き込むようになっている。

 私の手持ちの、ArduinoにSDカードをつなぐ手段は、先日から愛用中の「ETHERNET SHIELD 2」に搭載されているSDカードスロットだけだから、とりあえずこれを使う。

 手持ちのSDカードをETHERNET SHIELD 2に挿し、Adafruitのサイトのチュートリアルを参考に回路をブレッドボードに組む。

IMG_3122

 注意する点は2つだ。

  1.  サンプルスケッチをよく読むと、普通のSDカードは10番ピンを使うが、ETHERNET SHIELD 2を使う場合は4番ピンにつながる。なので、サンプルスケッチの中の「#define chipSelect 10」というところを「#define chipSelect 4」に書き換えなければならない。
  2.  メーカーサイトのチュートリアルでは、カメラに添付の10kΩの抵抗をTXの次に直列に二つ入れて、1本目と2本目の間からTXをとり、それをアースしているが、どうもこれだとうまく行かなかった。多分、このチュートリアルは給電が5Vだからだと思う。そこで、アースはそのままに、1本目の手前でTXをとるとうまくいった。
    IMG_3127

 そうやってArduinoをスタートさせると、写真が1枚だけ撮れる。

 下は、そうやって撮った私の顔である。

IMAGE02

 ……むっちゃむさくるしいなあw。

赤外線リモコン

投稿日:

 もうひとつ。赤外線リモコンの送信部を求めようと思って秋月電子へ行ったら、逆の、リモコンと受信機が売られていた。800円。

IMG_3101

 メーカーのサイトに行くとサンプルスケッチがあるが、なかなかこれは大きさがある。

 IDEにメーカーサイトのスケッチをコピペし、モジュールをArduinoにつなぐ。赤黒はそれぞれ+5VとGND、緑はデジタルの2番ピンにつなぐ。

IMG_3103

 そうやっておいて、付属のリモコンを操作すると、シリアルモニタに操作したキーがモニターされる。

IRRemoconTest

 何か動かすときには、サンプルスケッチの一番下のほうにある、switch~caseの中を書き換えればいいわけだ。